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TERMOMECHANIKA 

 

 

1. OBSAH TERMOMECHANIKY, HISTORICKÉ POZNÁMKY 

Obsah této kapitoly: 

→ Zařazení termomechaniky, předmět zkoumání 

→ Historické poznámky 

→ Základní pojmy a veličiny 

Zařazení termomechaniky, předmět zkoumání 

Termomechanika se zabývá teplem a vzdušinami 

jako vhodnými nositeli tepla. Studuje jak šíření tepla 

v prostoru (termokinetika), tak podmínky využití 

tepelné výměny pro konání mechanické práce 

(termodynamika). Nauka o sdílení tepla je základem 

teorie výměníků tepla, termodynamika představuje 

teoretický základ tepelných strojů (spalovací motory, 

parní a plynové turbíny, kompresory aj.). 

 

  

 

Teplo je veličina, pomocí níž vyjadřujeme tepelnou výměnu (ohřev či ochlazení) a změnu 

tepelné (správně vnitřní) energie tělesa. Zatímco energie je spojena se stavem, teplo je, 

podobně jako práce, spojeno s dějem1.  

 

Fyzika pojem „tepelná“ energie nezná, pracuje s energií vnitřní, která je spojena se 

změnou teploty. Pojem tepelná energie je však v běžné mluvě vžitý, představitelný a 

používaný. 

Historické poznámky 

Podstata tepla nebyla dlouho jasná. Na konci 17. století se objevila teorie zvláštní látky, 

flogistonu, která se uvolňuje spalováním, později byla vystřídána vykonstruovanou teorií 

fluidovou (nehmotná substance). Na základě zkušeností při vrtání dělových hlavní bylo 

zjištěno, že se teplo nemusí uvolňovat jen hořením, ale také mechanickou cestou. 

 

V souvislosti s rozvojem parního stroje na přelomu 18. a 19. století se začali učenci hlouběji 

zajímat o podstatu dějů v parních strojích, protože bylo třeba snížit spotřebu paliva a zvýšit 

výkon a účinnost. Teoretické základy termodynamiky jsou spojeny se jménem francouzského 

fyzika a vojenského inženýra Nicolase Leonarda Sadi Carnota (1796-1832). Carnot, syn 

Napoleonova ministra války, formuloval základní podmínky využití tepla ke konání práce, 

tedy principy termodynamiky, které však na dlouhou dobu zapadly. Mezitím je formulovali 

jiní, to mu však neubírá na velikosti. Carnot ještě vycházel z představy tepla jako substance 

(látky), jeho výklad principu tepelného motoru používal analogii s vodním mlýnem. Postupně 

 
1 Předávání energie je možné dvěma způsoby: vykonáním práce („plyn stlačíme“) a tepelnou výměnou („plyn 

ohřejeme“) 
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však tuto teorii opustil a spatřoval podstatu tepla v pohybu nejmenších částic hmoty (kinetická 

teorie). 

 

V 19. století byl vysloven obecný zákon zachování energie (koncem 1. poloviny století s ním 

vystoupil německý lékař Julius Robert von Mayer,1814-1878). Mayer, který sloužil jako 

lodní lékař, si povšiml, že rozdíl mezi barvou žilní a tepenné krve námořníků je v tropech 

menší než v mírném pásmu. Usoudil, že v teplejším prostředí tělo produkuje méně tepla 

spalováním. Jinou cestou se ubíral anglický pivovarník James Prescott Joule (1818-1889), 

který na základě výzkumu elektrických jevů, principu elektromotoru a dalších pokusů 

zobecnil souvislost mezi teplem a mechanickou prací. Matematickou stránkou problému se 

zabýval Hermann Ludwig von Helmholtz (1821-1894), německý fyzik, třetí nezávislý 

objevitel zákona zachování energie. 

Základní pojmy a veličiny 

Systém, soustava, těleso: 

Určité množství tuhé, kapalné nebo plynné látky, jejíž chování vyšetřujeme. Systém atd. 

vyčleňujeme z okolí, které je vně systému, abychom mohli kontrolovat výměnu látky 

a energie systému a okolí a změny stavu. 

 

Teplota: 

Vedle tlaku a měrného objemu či hustoty základní stavová veličina1. Teplota charakterizuje 

tepelný stav tělesa, např. pocitově vnímáme, je-li těleso teplejší či chladnější. Měříme ji 

pomocí teploměrů. Teplotu běžně udáváme ve stupních Celsia (°C, Celsiova teplota), pro 

termodynamické výpočty v Kelvinech (K, Kelvinova, termodynamická, či absolutní teplota). 

 

Převodní vztah mezi oběma stupnicemi je 𝑇(𝐾) = 𝑡(℃) + 273,15. Pro praktické účely 

postačuje konstanta 273. Teplota absolutní nuly (0 K) je nedosažitelná, ustal by při ní 

tepelný pohyb molekul. Látky mají v blízkosti absolutní nuly zvláštní vlastnosti 

(supravodivost aj.).  

 

Rozdíly mezi týmiž teplotami mají v obou stupnicích stejnou hodnotu. Poměry teplot 

v termomechanice musíme vždy uvažovat v Kelvinech. 

 

𝑡1 − 𝑡2 = 𝑇1 − 𝑇2, 
 

𝑡1

𝑡2
≠

𝑇1

𝑇2
 . 

 

 

 

 

 

Otázka a úkoly: 

1. Čím se zabývá termodynamika? 

2. Převeďte teploty 20 °C, 600 °C, -50 °C na teploty absolutní. 

3. Převeďte na Celsiovu teplotu: 289 K, 6000 K, 4 K. 

 
1 Vedle základních stavových veličin používáme ještě stavové veličiny energetické a odvozené, s nimiž se 

seznámíme později. Mezi energetické stavové veličiny patří např. zmíněná vnitřní energie, mezi odvozené např. 

dynamická viskozita. 
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2. ZÁKLADY NAUKY O TEPLE 

Obsah této kapitoly: 

→ Teplo a tepelný výkon 

→ Změna skupenství látky 

→ Vnitřní energie a první zákon termodynamiky 

→ Tepelná roztažnost a rozpínavost 

Teplo a tepelný výkon 

Množství tepla Q dodaného nebo odebraného systému je dáno vztahem: 

 

𝑄 = 𝑚 ∙ 𝑐 ∙ (𝑡2 − 𝑡1). 
 

Protože prostřednictvím tepla je předávána energie, má v soustavě SI teplo stejnou 

jednotku jako energie (J). Tepelný ekvivalent mechanické práce má tedy v soustavě SI 

hodnotu 1, což usnadňuje výpočty. Teplo systému dodané je kladné, teplo odvedené je 

záporné. Součin 𝐾 = 𝑚 ∙ 𝑐 nazýváme tepelnou kapacitou. 

 

Měrná tepelná kapacita c: 

Měrná tepelná kapacita je množství tepla, které je potřeba k ohřátí jednoho kilogramu látky o 

jeden stupeň. Platí: 

𝑐 =
𝐾

𝑚
 (J ∙ kg−1 ∙ K−1). 

 

Měrná tepelná kapacita závisí na druhu látky a je tedy fyzikální vlastností1. U plynů 

rozlišujeme měrnou tepelnou kapacitu při konstantním objemu (izochorickou) cv a při 

konstantním tlaku (izobarickou) cp. 

 

Příklad: 

Ocelový výkovek o hmotnosti m1 = 6 kg ohřátý na kalicí teplotu se ponořil do kalicí olejové 

lázně. Ta obsahovala m2 = 35 kg oleje o teplotě to1 = 20 °C. Po vyrovnání teplot stoupla 

teplota lázně na to2 = 57 °C. Stanovte teplotu výkovku před zakalením. 

 

Řešení: 

Teplo, které olej přijme, se rovná teplu, které vydá výkovek2, a konečné teploty se rovnají 

(t2 = to2): 

 

𝑚2 ∙ 𝑐2 ∙ (𝑡𝑜2 − 𝑡𝑜1) = −𝑚1 ∙ 𝑐1 ∙ (𝑡2 − 𝑡1). 
 

Odtud: 

𝑡1 = 𝑡2 +
𝑚2 ∙ 𝑐2 ∙ (𝑡𝑜2 − 𝑡𝑜1)

𝑚1 ∙ 𝑐1
= 57 +

35 ∙ 1670 ∙ (57 − 20)

6 ∙ 461
= 838,9 (℃). 

 

Měrné tepelné kapacity, vyhledané ve strojnických tabulkách, jsou: 

pro ocel: 𝑐1 = 0,461 kJ ∙ kg−1 ∙ K−1, 

pro olej: 𝑐2 = 1,670 kJ ∙ kg−1 ∙ K−1. 

 
1 Látky s malou měrnou tepelnou kapacitou mají velkou tepelnou vodivost a naopak. 
2 Obdržíme tzv. kalorimetrickou rovnici známou z fyziky. 
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Teplo odevzdané výkovkem má záporné znaménko. V tom případě je nutné důsledně 

psát rozdíl teplot jako konečná – počáteční. 

 

Tepelný tok (výkon) 𝑄𝜏: 

Technická zařízení nazývaná výměníky tepla (ohříváky, výparníky, chladiče, kondenzátory) 

pracují nepřetržitě. Množství látky tedy určujeme hmotnostním tokem. Tepelný tok (neboli 

tepelný výkon) je množství tepla sdělené za jednotku času: 

 

𝑄𝜏 =
𝑄

𝜏
=

𝑚

𝜏
∙ 𝑐 ∙ (𝑡2 − 𝑡1) = 𝑄𝑚 ∙ 𝑐 ∙ (𝑡2 − 𝑡1)  (J ∙ s−1 = W). 

 

Příklad: 

Varná konvice o příkonu 2 200 W má ohřát 1 litr vody z teploty 15 °C na teplotu 100 °C. 

Určete, jak dlouho ohřev trvá při zanedbání ztrát, a potřebné množství tepla. 

 

Řešení: 

Při zanedbání ztrát je příkon konvice roven tepelnému toku: 

 

𝑃 = 𝑄𝜏 =
𝑚

𝜏
∙ 𝑐 ∙ (𝑡2 − 𝑡1). 

 

Odtud potřebný čas na ohřev vody: 

 

𝜏 =
𝑚

𝑃
∙ 𝑐 ∙ (𝑡2 − 𝑡1), 𝑐 = 4,186 kJ ∙ kg−1 ∙ K−1, 

 

𝜏 =
1 kg

2 200
∙ 4 186 ∙ (100 − 15) ≐ 162 (s). 

 

Potřebné teplo: 

 

𝑄 = 𝑚 ∙ 𝑐 ∙ (𝑡2 − 𝑡1) = 1 ∙ 4,186 ∙ (100 − 15) = 355,8 (kJ). 

 

Změna skupenství látky 

Změny skupenství jsou děje za stálé teploty a stálého tlaku (izotermicko-izobarické). 

Látce je přiváděno nebo odváděno skupenské (latentní, tedy „skryté“) teplo L. Na 1 kg 

látky je vztaženo měrné skupenské teplo l (J.kg-1).  

 

Příklad: 

Vypočtěte množství tepla, které je potřeba na roztavení 50 kg hliníku, je-li teplota vsázky 20 

°C. 

 

Řešení: 

Potřebné teplo se skládá z tepla pro ohřev hliníku na teplotu tavení a ze skupenského tepla.   

V tabulkách nalezneme hodnoty teploty tavení, měrné tepelné kapacity a měrného 

skupenského tepla: 𝑡𝑡𝑎𝑣 = 658 (℃), 𝑐 = 0,921 (kJ ∙ kg−1 ∙ K−1), 𝑙 = 394 (kJ ∙ kg−1). 
 

Celkové teplo (pozor na jednotky): 

𝑄 = 𝑚 ∙ 𝑐 ∙ (𝑡𝑡𝑎𝑣 − 𝑡1) + 𝑚 ∙ 𝑙 = 50 ∙ 0,921 ∙ (658 − 20) + 50 ∙ 394 = 49 079,9 (kJ). 
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Vnitřní energie a první zákon termodynamiky 

Vnitřní energie U představuje celkovou potenciální i kinetickou energii částic a závisí na 

teplotě. Patří mezi energetické stavové veličiny a její změna je rovna teplu přivedenému (nebo 

odvedenému) za stálého objemu (např. ohřev plynu v uzavřené nádobě): 

 

𝑈 = 𝑚 ∙ 𝑐𝑣 ∙ (𝑡2 − 𝑡1) (J). 

 

 

Absolutní hodnota vnitřní energie by se určila vzhledem k absolutní nule jako 𝑈 = 𝑚 ∙ 𝑐𝑣 ∙ 𝑇, 

ale ve výpočtech budeme pracovat pouze s její změnou. 

 

Měrná vnitřní energie je vztažena na 1 kg látky: 

 

𝑢 =
𝑈

𝑚
= 𝑐𝑣 ∙ (𝑡2 − 𝑡1) (J ∙ kg−1). 

 

Vnitřní energii soustavy je možno zvýšit přívodem tepla nebo vykonáním práce (stlačením 

plynu) – viz obr. Představit si to můžeme tak, že se 

z makroskopického hlediska nezmění ani poloha těžiště 

soustavy ani její rychlost (nezmění se polohová a pohybová 

energie). Vzroste energie molekul (rozkmitají se rychleji), 

a tedy energie vnitřní. Popsaný děj můžeme vyjádřit rovnicí: 

 

∆𝑈 = 𝑄 + 𝐴. 
 

V tomto případě rovnici slovně interpretujeme tak, že 

přírůstek vnitřní energie soustavy je roven součtu 

přivedeného tepla a (objemové1) práce vnějších sil. 

Vyslovili jsme I. termodynamický zákon (také nazývaný I. 

hlavní věta termodynamická). 

  

V technické termodynamice, kdy studujeme např. principy tepelných 

motorů, vyjadřujeme I. zákon termodynamiky častěji rovnicí: 

 

𝑄 = 𝐴 + ∆𝑈. 
 

Přivedené teplo se zčásti využije na (objemovou) mechanickou práci, 

kterou vykonají vnitřní síly proti okolí a zčásti na zvýšení vnitřní 

energie. 

 

Z rovnic vyplývá, že práce vnitřních a vnějších sil mají opačné znaménko 

(což v podstatě plyne z principu akce a reakce).  

  

 

Znaménková konvence, důležitá ve výpočtech technické termodynamiky, je: 

pro teplo: +Q – teplo přivedené soustavě z okolí, 

 –Q – teplo do okolí odvedené, 

 
1 Pro výpočet práce a výkonu tepelného motoru je důležitá suma všech přivedených a vykonaných objemových 

prací, což je tzv. práce technická. 
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pro práci: +A – práce vnitřních sil vykonaná proti okolí, 

 –A – práce dodaná, konaná proti působení vnitřních sil. 

 

I. věta termodynamická představuje tedy zvláštní tvar bilance celkové energie soustavy a jako 

taková je důsledkem zákona zachování energie. Stroj, který by vyráběl energii „z ničeho“, 

by porušoval tento první zákon termodynamiky a nazývá se proto perpetuum mobile 

prvního druhu1. Termodynamika v tomto širším slova smyslu je vědou o energii a jejích 

vlastnostech. 

 

První zákon termodynamiky říká pouze tolik, že energii lze vzájemně přeměňovat, 

připouští tedy i nepřirozené děje, které podle našich zkušeností nemohou v přírodě 

nastat, např. samovolný přestup tepla z tělesa chladnějšího na těleso teplejší, proto 

musí být doplněn ještě druhým zákonem termodynamiky a dále konstatováním 

nedosažitelnosti absolutní nuly.  

 

O termodynamických zákonech bude podrobněji pojednáno později včetně technických 

aplikací. 

 

Příklad: 

25 kg kyslíku o teplotě 17 °C se přivedlo 50 kJ tepla a současně se přivedlo 80 kJ objemové 

práce. Určete konečnou teplotu kyslíku. 

 

Řešení: 

Přivedené teplo bude mít kladné znaménko, přivedené práci, konané proti působení vnitřních 

sil, přiřadíme v rovnici 𝑄 = 𝐴 + ∆𝑈 znaménko záporné: 

 

50 = −80 + 25 ∙ 0,657 ∙ (𝑡2 − 17), 𝑐𝑣 = 0,657 (kJ ∙ kg−1 ∙ K−1).  
 

Konečná teplota: 

 

𝑡2 = 17 +
50 + 80

25 ∙ 0,657
= 24,9 (℃). 

 
Příklad: 

1200 g vzduchu o teplotě 15 °C se přivede 84 kJ tepla, přičemž teplota stoupne na 40 °C. 

Jakou objemovou práci vykonal vzduch? 

 

Řešení: 

V rovnici 𝑄 = 𝐴 + ∆𝑈 bude mít teplo znaménko kladné (přivedené). 

𝑐𝑣 = 0,714 (kJ ∙ kg−1 ∙ K−1). 
 

84 = 𝐴 + 1,2 ∙ 0,714 ∙ (40 − 15) ⇒ 𝐴 = 84 − 1,2 ∙ 0,714 ∙ (40 − 15) = 62,58 (kJ). 

 

Práce je kladná, v rovnici je zavedena jako práce vnitřních sil, vzduch ji tedy skutečně 

vykonal. 

 

 
1 Přesně je perpetuum mobile prvního druhu definováno jako stroj, který by konal proti svému okolí trvale 

mechanickou práci, aniž by se měnila energie tohoto stroje nebo energie jeho okolí. 
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Tepelná roztažnost a rozpínavost 

A) Délková roztažnost pevných látek 

Prosté prodloužení (nebo zkrácení) součásti délky l je dáno 

vztahem: 

 

∆𝑙 = 𝑙0 ∙ 𝛼 ∙ ∆𝑡 (m, mm). 
 

Součinitel teplotní délkové roztažnosti  má jednotky K-1. 

Určuje prodloužení tyče délky 1 m při zahřátí o 1 K (nebo 

°C). 

 

Pokud vyjádříme prodloužení jako rozdíl ∆𝑙 = 𝑙1 − 𝑙0, můžeme 

určit prodlouženou délku: 

 

𝑙1 = 𝑙0 ∙ (1 + 𝛼 ∙ ∆𝑡). 
 

 

Pokud se těleso (hřídel, kolejnice, 

potrubí, drát elektrického vedení) 

nemůže volně roztahovat nebo 

smršťovat1, vzniká v něm síla 

a napětí. Předpokládáme-li namáhání 

v oblasti pružných deformací, řešíme 

sílu a napětí pomocí Hookova 

zákona2. Jedná se o staticky neurčitou 

úlohu řešitelnou např. metodou 

porovnávání deformací: 

 

1. Sestavíme statickou podmínku 

rovnováhy, v tomto případě jako 

rovnici o dvou neznámých 𝐹𝐴 − 𝐹𝐵 =
0; 𝐹𝐴 = 𝐹𝐵 = 𝐹. 

 

 

  

 

2. Předpokládáme, že síla „vrací“ deformaci způsobenou změnou teploty, takže se 

deformace způsobená změnou teploty rovná deformaci způsobené silou a výsledná 

deformace je nulová. Odtud druhá rovnice: 

 

∆𝑙𝐹 = ∆𝑙𝑡, 
 

𝐹 ∙ 𝑙0

𝐸 ∙ 𝑆
= 𝑙0 ∙ 𝛼 ∙ ∆𝑡,  

 

𝐹 = 𝐸 ∙ 𝑆 ∙ 𝛼 ∙ ∆𝑡;   𝜎 = 𝐸 ∙ 𝛼 ∙ ∆𝑡. 

 
1 Této vlastnosti se říká dilatace materiálu. 
2 Vztah  ∆𝑙 =

𝐹∙𝑙0

𝐸∙𝑆
  pro výpočet prostého prodloužení byl z Hookova zákona odvozen v pružnosti a pevnosti. 
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B) Objemová roztažnost pevných a kapalných látek 

 Objem pevného tělesa je v závislosti na teplotě dán rovnicí: 

 

𝑉1 = 𝑉0 ∙ (1 + 3𝛼 ∙ ∆𝑡). 
 

U kapalin je objem určen vztahem 

 

𝑉1 = 𝑉0 ∙ (1 + 𝛾 ∙ ∆𝑡). 
 

Koeficient   je součinitel teplotní objemové roztažnosti. 

 

U vody nastává tento růst objemu s teplotou od teploty 4 °C, kdy je hustota vody největší. 

Mezi teplotami 0 °C a 4 °C se vyskytuje anomálie (odlišnost, zvláštnost), protože se objem 

s rostoucí teplotou zmenšuje. 

 

C) Objemová roztažnost a rozpínavost plynů, základní zákony ideálního plynu 

Objem plynů je závislý kromě teploty také na tlaku. U plynů rozlišujeme dva základní děje 

(změny stavu) – děj izochorický (za konstantního objemu) a děj izobarický (za konstantního 

tlaku. 

 

a) izochorický děj (V = konst.): 

Tlak rozpínajícího se plynu určíme podle vztahu 

 

𝑝1 = 𝑝0 ∙ (1 + 𝛽 ∙ ∆𝑡). 
 

Koeficient  je součinitel izochorické teplotní rozpínavosti plynu a 

je pro všechny plyny přibližně stejný, má hodnotu 1/273 K-1. Tlak se 

mění v závislosti na teplotě podle Charlesova zákona1, který 

odvodíme z výše uvedené rovnice tak, že budeme předpokládat 

ohřev z teploty 0 °C na teplotu t. Pak dostaneme: 

  

𝑝𝑡 = 𝑝0 ∙ (1 +
1

273
∙ 𝑡) = 𝑝0 ∙

273 + 𝑡

273
= 𝑝0 ∙

𝑇

273
, 

Obecně 

𝑝𝑡 = 𝑝0 ∙
𝑇

𝑇0
;  

𝑝𝑡

𝑝0
=

𝑇

𝑇0
. 

 

Charlesův zákon: Tlak plynu je při stálém objemu přímo úměrný absolutní teplotě, 

měrné tlaky jsou v poměru absolutních teplot. 

 

b) izobarický děj (p = konst.): 

Objemová roztažnost je dána výše uvedeným vztahem 

 

𝑉1 = 𝑉0 ∙ (1 + 𝛾 ∙ ∆𝑡) 

 

Součinitel izobarické teplotní roztažnosti  je opět pro všechny plyny stejný a má opět 

hodnotu 1/273 K-1. 

 
1 Jacques Alexandre César Charles (1746-1823), francouzský fyzik, mimo jiné vynálezce vodíkového balónu 

(1783). 
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Uvažujeme-li opět ohřev z teploty 0 °C, obdržíme zcela analogickým 

postupem Gay-Lussacův1 zákon : 

 

𝑉𝑡 = 𝑉0 ∙ (1 +
1

273
∙ 𝑡) = 𝑉0 ∙

273 + 𝑡

273
= 𝑉0 ∙

𝑇

273
. 

 

Obecně pak 

𝑉𝑡 = 𝑉0 ∙
𝑇

𝑇0
;  

𝑉𝑡

𝑉0
=

𝑇

𝑇0
 . 

  

 

Gay-Lussacův zákon: Objem plynu je při stálém tlaku přímo úměrný absolutní teplotě, 

objemy jsou v poměru absolutních teplot. 

 

 

V poměrech teplot důsledně dosazujeme absolutní (Kelvinovu) teplotu! 

 

 

Příklad: 

Vnitřní průměr bandáže kola kolejového vozidla je při t1 = 20 °C D = 552 mm. Kolo, na které 

je bandáž (nákolek) nasazena má průměr d = 553,2 mm. Pro nasazení bandáže za tepla je 

nutná vůle v = 1,2 mm, tzn. ohřátá bandáž má mít vnitřní průměr Dt = 553,2 + 1,2 = 554,4 

mm. Za předpokladu rovnoměrného prodlužování bandáže po celém jejím obvodu (indukční 

ohřev) určete potřebnou teplotu ohřevu. Součinitel  = 1,2.10-5 K-1. 

 

Řešení: 

V rovnici 𝑙1 = 𝑙0 ∙ (1 + 𝛼 ∙ ∆𝑡) odpovídají délky l obvodu bandáže před a po ohřevu. 

 

𝜋 ∙ 𝐷1 = 𝜋 ∙ 𝐷 ∙ (1 + 𝛼 ∙ ∆𝑡), 
 

∆𝑡 =
𝐷1 − 𝐷

𝐷 ∙ 𝛼
=

554,4 − 552

552.1,2 ∙ 10−5
= 362,3 (℃). 

 

Teplota ohřevu 𝑡2 = 𝑡1 + ∆𝑡 = 20 + 362,3 = 382,3 ≐ 383 (℃). 

 

Příklad: 

Vzduch, uzavřený v nádrži konstantního objemu, má při teplotě t1 = 20 °C tlak p1 = 1 MPa. 

Na jakou teplotu se ohřál, je-li jeho tlak po ohřevu p2 = 1,1 MPa? 

 

Řešení: 

Tento jednoduchý příklad je zadán hlavně proto, abychom si uvědomili správné dosazování 

teplot. T1 = t1 + 273 = 20 + 273 = 293 K. 

 

Z Charlesova zákona:  

 

𝑇2 = 𝑇1 ∙
𝑝2

𝑝1
= 293 ∙

1,1

1
= 322,3 (K) = 49,3 ℃. 

 
1 Joseph Louis Gay-Lussac (1778-1850), francouzský chemik a fyzik. 
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Otázky a úkoly: 

1. Jak se vypočítá množství tepla potřebného pro ohřátí určitého množství látky? 

2. Co je to kalorimetrická rovnice? 

3. Pokuste se zdůvodnit, proč je rychlovarná konvice úspornější než plotýnkový vařič. 

4. Co se děje s teplotou při změně skupenství? 

5. Jak se vypočítá vnitřní energie? 

6. Co říká první zákon termodynamiky a se kterým významným fyzikálním zákonem 

souvisí? 

7. Jak se chovají pevné a kapalné látky při ohřevu a ochlazování? 

8. Jak se chovají plyny při ohřevu a které základní děje rozeznáváme? 
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3. STAVOVÁ ROVNICE IDEÁLNÍHO PLYNU 

Obsah této kapitoly: 

→ Stavová rovnice, plynová konstanta 

Stavová rovnice, plynová konstanta 

Obecně se dva různé stavy ideálního plynu1 liší tlakem, teplotou i měrným objemem. 

Z laboratorních měření vyplývá vztah 

 
𝑝1 ∙ 𝑣1

𝑇1
=

𝑝2 ∙ 𝑣2

𝑇2
=

𝑝3 ∙ 𝑣3

𝑇3
=. . . =

𝑝𝑛 ∙ 𝑣𝑛

𝑇𝑛
= 𝑘𝑜𝑛𝑠𝑡. 

 

Konstanta má hodnotu závislou na druhu plynu a nazývá se měrná plynová konstanta, 

označuje se r a její rozměr je J.kg-1.K-1. 

 

Uvedenou rovnici nazýváme stavovou rovnicí ideálního plynu a píšeme ji ve tvaru 

 

𝑝 ∙ 𝑣 = 𝑟 ∙ 𝑇, 

 

Pro m kilogramů látky pak 

𝑝 ∙ 𝑉 = 𝑚 ∙ 𝑟 ∙ 𝑇. 

 

Mezi měrnými tepelnými kapacitami a plynovou konstantou platí Mayerova rovnice: 

 

𝑐𝑝 − 𝑐𝑣 = 𝑟. 

 

Poměr hodnot měrných tepelných kapacit udává velikost Poissonovy konstanty kappa2 (jinak 

též adiabatického exponentu – termín bude vysvětlen později): 

 
𝑐𝑝

𝑐𝑣
= 𝜅 

 

Výběr hodnot některých technických plynů: 

 

Plyn r (J.kg-1.K-1) cp (kJ.kg-1.K-1) cv (kJ.kg-1.K-1)  (1) 

Kyslík 64,06 0,917 0,657 1,4 

Acetylén 319,6 1,529 1,323 1,23 

Dusík 296,75 1,038 0,739 1,401 

Vzduch 287,04 1,005 0,714 1,402 

Oxid uhličitý 188,97 0,821 0,628 1,31 

Hélium 2 079,00 5,234 3,202 1,66 

 

Příklad: 

Vypočítejte hustotu vzduchu při atmosférickém tlaku pa = 759 mm Hg a teplotě 20 °C. 

 
1 Přepokládáme znalost pojmu ideálního plynu z fyziky. Ideální plyn je ideálně stlačitelný, nezkapalnitelný, bez 

vnitřího tření. Lze jej popsat jednoduchými rovnicemi a skutečné plyny se mu při běžných tlacích a teplotách 

dostatečně blíží. 
2 Pro dvouatomové plyny má hodnotu přibližně 1,4. 
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Řešení: 

Tlak přepočítáme na jednotky soustavy SI: 

 

𝑝𝑎 = ℎ ∙ 𝜌𝐻𝑔 ∙ 𝑔 = 0,760 ∙ 13 600 ∙ 9,81 = 101 396,2 (Pa). 

 

Ze stavové rovnice vypočítáme (plynovou konstantu vyhledáme v tabulce): 

 

𝜌 =
1

𝑣
=

𝑝

𝑟 ∙ 𝑇
=

101 386,2

287 ∙ (20 + 273)
= 1,206 (kg ∙ m−3). 

 

 

Příklad: 

V nádobě o objemu V = 0,1 m3 je vzduch o tlaku p = 1 MPa a teplotě t = 20 °C. Určete 

hmotnost vzduchu a objem, který vzduch zaujme za normálních fyzikálních podmínek tj. pn = 

0,1 MPa, tn = 0 °C. 

 

Řešení: 

Hmotnost vzduchu ze stavové rovnice: 

 

𝑚 =
𝑝 ∙ 𝑉

𝑟 ∙ 𝑇
=

1 ∙ 106 ∙ 0,1

287 ∙ (20 + 273)
= 1,189 (kg). 

 

Objem za normálních podmínek: 

 

𝑉𝑛 = 𝑉 ∙
𝑝 ∙ 𝑇𝑛

𝑝𝑛 ∙ 𝑇
= 0,1 ∙

1 ∙ 106 ∙ 273

0,1 ∙ 106 ∙ 293
= 0,932 (m3). 

 

 

 

 

 

 

Otázky: 

1. V jakých jednotkách dosazujeme veličiny ve stavové rovnici? 

2. Na čem závisí měrná plynová konstanta? 
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4. PRVNÍ ZÁKON TERMODYNAMIKY, ABSOLUTNÍ A TECHNICKÁ 
PRÁCE 

Obsah této kapitoly: 

→ Absolutní a technická práce 

→ Dva tvary prvního zákona termodynamiky, entalpie 

→ Výkon tepelného motoru 

Absolutní a technická práce 

Absoutní práce A je totožná s prací objemovou, kterou jsme poznali v kapitole o vnitřní 

energii. Je to jednorázová práce tlakových sil 

spotřebovaná při kompresi nebo vykonaná při 

expanzi. Absolutní prací se nazývá proto, že ji 

měříme vzhledem k tlakové nule – absolutnímu 

vakuu. 

 

V diagramu p-V (popř. p-v) odpovídá absolutní práce 

obsahu plochy mezi křivkou průběhu změny stavu 

a osou x1. V našem případě se jedná o expanzi – tedy 

pracovní zdvih tepelného motoru. 

 

Práce (vnitřních sil) při expanzi je kladná, práce při 

kompresi (konaná proti působení vnitřních sil) je 

záporná. 

  

 

Technickou práci At si na základě obrázku v úvodu kapitoly představíme jako výslednou 

práci při jedné otáčce pístového stroje. Je tedy rovna algebraickému součtu všech 

absolutních prací2.  

 

Obrázek znázorňuje cyklus myšleného ideálního 

motoru (ve skutečnosti nemůže samozřejmě píst 

narazit na dno válce, ale zavedení skutečných dějů by 

znesnadnilo pochopení základních principů). 

 

Technická práce: 

 

𝐴𝑡 = ∑ 𝐴, 

 

𝐴𝑡 = 𝑝1𝑉1 + 𝐴 − 𝑝2𝑉2. 
 

 

 

  

 
1 V hydromechanice jsme odvozovali tlakovou energii jako práci tlakové síly a výsledný vztah byl p.V – tedy 

plocha p-V diagramu. 
2Např. čtyřdobý spalovací motor pracuje v cyklu sání – komprese – expanze – výfuk. Kladnou práci získáme 

pouze při expanzi, při ostatních zdvizích se část práce do cyklu vrací. 
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Dva tvary prvního zákona termodynamiky, entalpie 

Absolutní práci, vyjádřenou ze vztahu pro práci technickou, dosadíme do již zavedeného 

tvaru prvního zákona termodynamiky 𝑄 = 𝐴 + ∆𝑈: 

 

𝐴 = 𝐴𝑡 + 𝑝2𝑉2 − 𝑝1𝑉1 , 
 

𝑄 = ∆𝑈 + 𝐴𝑡 + 𝑝2𝑉2 − 𝑝1𝑉1 = 𝐴𝑡 + (𝑈2 + 𝑝2𝑉2) − (𝑈1 + 𝑝1𝑉1). 
 

 Výraz 𝑈 + 𝑝𝑉, tedy součet vnitřní a tlakové energie, vyjadřuje entalpii I. 

 

Entalpie: 

Entalpie je energetická stavová veličina, podobně jako vnitřní energie (také má rozměr 

energie – J). Představuje klidovou energii vzdušiny1. V některých publikacích je 

značena H. 

Změna entalpie: 

 

∆𝐼 = 𝐼2 − 𝐼1 = (𝑈2 + 𝑝2𝑉2) − (𝑈1 + 𝑝1𝑉1) = 𝑈2 − 𝑈1 + 𝑝2𝑉2 − 𝑝1𝑉1. 

 

Vnitřní energii vyjádříme jako teplo přivedené za stálého objemu, součiny pV nahradíme 

součiny mrT ze stavové rovnice a využijeme vztahu 𝑐𝑝 − 𝑐𝑣 = 𝑟 (Mayerova rovnice): 

 

∆𝐼 = 𝑚 ∙ 𝑐𝑣 ∙ (𝑇2 − 𝑇1) + 𝑚 ∙ 𝑟𝑇2 − 𝑚 ∙ 𝑟𝑇1 = 𝑚 ∙ (𝑐𝑣 + 𝑟) ∙ (𝑇2 − 𝑇1) = 𝑚 ∙ 𝑐𝑝 ∙ (𝑇2 − 𝑇1). 

 

Změna entalpie je rovna teplu přivedenému (odvedenému) za stálého tlaku. 

 

Druhý tvar prvního termodynamického zákona: 

Po dosazení do upraveného prvního termodynamického zákona dostaneme jeho druhý tvar: 

 

𝑄 = 𝐴𝑡 + 𝐼2 − 𝐼1. 
 

Ve tvaru měrných energií pro 1 kg plynu (rovnici dělíme hmotností m): 

 

𝑞 = 𝑎𝑡 + 𝑖2 − 𝑖1. 
 

 
1 Např. pára v kotli má vysokou teplotu a tlak. Její klidovou energii – entalpii můžeme přeměnit na energii 

kinetickou, díky níž pára pohání rotor. 
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Tento druhý tvar prvního termodynamického zákona, který je výhodný pro výpočty 

energetických strojů. 

Připomeňme už dříve uvedenou znaménkovou konvenci: 

pro teplo: +Q – teplo přivedené soustavě z okolí, 

 –Q – teplo do okolí odvedené, 

pro práci:  +A – práce vnitřních sil vykonaná proti okolí, 

 –A – práce dodaná, konaná proti působení vnitřních sil. 

 

Příklad: 

Na stlačení 0,42 kg vodíku o teplotě 15 °C byla vynaložena objemová práce 220 kJ, přičemž 

bylo zároveň chlazením odvedeno 186 kJ tepla. Jaká je teplota vodíku po stlačení? 

 

Řešení: 

Teplotu vodíku vypočítáme ze změny vnitřní energie, která je rovna teplu sdělenému za 

stálého objemu: ∆𝑈 = 𝑚 ∙ 𝑐𝑣 ∙ (𝑡2 − 𝑡1). 

 

Změnu vnitřní energie vypočítáme z prvního zákona termodynamiky, kde dosadíme práci se 

znaménkem – (práce vykonaná nad soustavou) a teplo také se znaménkem – (teplo odvedené): 

 

𝑄 = 𝐴 + ∆𝑈, 
−186 = −220 + ∆𝑈 ⇒ ∆𝑈 = 34 (kJ). 
 

∆𝑈 = 𝑚 ∙ 𝑐𝑣 ∙ (𝑡2 − 𝑡1), 𝑡𝑒𝑑𝑦 𝑡2 = 𝑡1 +
∆𝑈

𝑚 ∙ 𝑐𝑣
 = 15 +

34

0,42 ∙ 10,111
= 23 (℃) 

Výkon tepelného motoru 

Výkon je fyzikálně definován jako práce vykonaná za jednotku času, v našem případě se 

jedná o periodicky konanou práci technickou: 

 

𝑃 =
𝐴𝑡

𝜏
=

𝑚 ∙ 𝑎𝑡

𝜏
= 𝑄𝑚 ∙ 𝑎𝑡. 

 

Jednotkou je watt – W. U velkých tepelných strojů udáváme výkon v kW, MW. 

V případě teoretického pracovního stroje (neuvažujeme ztráty), např. kompresoru, se 

podle výše uvedeného vztahu počítá příkon. 

 

Výpočet technické práce záleží na druhu stavové změny. Ty budou probrány později. 

 

 

 

 

 

Otázky a úkol: 

1. Jaký je rozdíl mezi absolutní a technickou prací? 

2. Co vyjadřuje entalpie a jak se vypočítá její změna? 

3. Uveďte oba tvary prvního zákona termodynamiky pro obecné množství látky a pro 1 kg. 
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5. DRUHÝ ZÁKON TERMODYNAMIKY, ENTROPIE 

Obsah této kapitoly: 

→ Perpetuum mobile druhého druhu, přirozené a nepřirozené změny 

→ Druhý zákon termodynamiky, tepelná účinnost 

→ Entropie a matematický tvar druhého zákona 

 

Perpetuum mobile druhého druhu, přirozené a nepřirozené změny 

První zákon termodynamiky vylučuje sestrojení perpetua mobile prvního druhu, tj. 

stroje, který by trvale konal práci, aniž by mu byla dodávána energie. Stroj, který by 

pouze trvale přejímal teplo od nějakého zdroje a nezpůsoboval žádné jiné změny, tedy 

by všechno toto teplo využil ke konání práce (měl by účinnost 1), však prvnímu zákonu 

neodporuje. Přesto je podle našich zkušeností nemožné takový stroj sestrojit. Nazývá se 

perpetuum mobile druhého druhu. 

 

Takový stroj by trvale nepracoval, brzy by se přehřál růstem vnitřní energie. V úvodu 

zmíněný Nicolas Carnot zjistil, že každý periodicky 

pracující tepelný motor musí být v kontaktu se dvěma 

tepelnými zásobníky: se zdrojem (ohřívačem), který je 

teplejší než motor, a s chladičem, který je chladnější. 

K úspěšné práci tepelného stroje je tedy potřeba rozdílu 

teplot. Čím je rozdíl větší, tím lépe. Výstupní teplota je 

dána teplotou okolí (a je tedy poměrně vysoká), můžeme 

teoreticky libovolně zvyšovat vstupní teplotu, tam jsme 

omezeni možnostmi materiálů. 

 

Carnot chápal, že teplo samovolně přechází pouze z tělesa 

teplejšího na chladnější. Protože pracoval v době 

doznívajících představ o teple jako o hmotné či nehmotné 

substanci, používal analogii s vodou a vodním mlýnem.  

  

 

Je zřejmé, že přirozené změny v přírodě probíhají pouze určitým směrem, nikdy ne naopak: 

voda teče samovolně pouze shora dolů, teplo samovolně přechází pouze z tělesa teplejšího na 

těleso chladnější, plyn vypuštěný z láhve se rozptýlí po celé místnosti, ale do láhve se 

samovolně nevrátí, hrnek samovolně spadne se stolu a rozbije se, ale střepy se už samovolně 

neposkládají v hrnek a nevyskočí na stůl.  To by byly změny nepřirozené. Statistická 

termodynamika říká, že přirozené děje mají mnohem větší pravděpodobnost, že se uskuteční, 

než děje nepřirozené. 

 

Popsané přirozené děje (vyrovnávání teplot, stékání vody k moři, rozptýlení plynu, rozbití 

hrnku) mají něco společného: spějí k méně uspořádaným stavům.  

 

Druhý zákon termodynamiky, tepelná účinnost 

Věta „Teplo nemůže samovolně přecházet z tělesa chladnějšího na teplejší“ je 



20 

 

doplněním I. termodynamického zákona a je jednou z formulací II. termodynamického 

zákona1 (II. věty termodynamické). Udává směr samovolného přirozeného toku energie. 

Jiným vyjádřením je formulace: Není možné sestrojit takový trvale pracující stroj, který 

by nezpůsoboval žádné jiné změny, než že by odnímal stálé množství tepla jednomu 

zdroji o stálé teplotě. První formulace je tzv. Carnot-Clausiova, druhá je Planckova. 

 

II. zákon termodynamiky vylučuje sestrojení trvale pracujícího stroje, který by pouze odnímal 

teplo z okolí, i stroje, který by „poháněl sám sebe“ (opět s účinností 1), tedy by v něm např. 

vratně expandovalo a bylo komprimováno určité množství plynu, vykonanou prací by se 

poháněl setrvačník a vracel by energii zpět. Analogií s takovým tepelným strojem jsou třeba 

dva spřažené hodinové stroje, kdy jeden natahuje druhý a pak si to vymění, nebo elektromotor 

pohánějící dynamo, které vyrábí proud pro pohon téhož elektromotoru.  Při každé změně 

přejde určité množství energie ve formě nevratného ztrátového tepla stejným směrem (tření, 

víření, deformační práce), zpět však už ne. Proto se stroj „pohánějící sebe sama“ zastaví. Jeho 

energie tak postupně „degraduje“ k teplu. 

 

Tepelná účinnost: 

Z Carnotova schématu v úvodu plyne, že rozdíl přivedeného a odvedeného tepla 

představuje množství tepla využitelného ke konání práce. Tento rozdíl vztažený na 

přivedené teplo představuje tepelnou (termickou) účinnost stroje: 

 

𝜂𝑡 =
𝑄𝑝 − 𝑄𝑜

𝑄𝑝
 . 

 

Stoprocentní účinnosti a přeměny veškerého přivedeného tepla v práci by bylo možno 

dosáhnout za předpokladu, že bychom neodváděli ze stroje žádné teplo (Qo = 0). Abychom 

nebyli v rozporu s II. zákonem termodynamiky, museli bychom dosáhnout na výstupu teploty 

absolutní nuly (0 K). Absolutní nuly však není možno dosáhnout. Teplotu navíc nemá 

smysl uměle snižovat, neboť na vytvoření extrémně nízké teploty bychom spotřebovali 

mnohem víc energie, než vyprodukuje náš tepelný motor. 

 

Kdosi moudrý shrnul termodynamiku do vtipné průpovídky: 

„Není možno vyhrát, je možno pouze dosáhnout nerozhodného výsledku. (I. zákon). 

Nerozhodného výsledku je možno dosáhnout za předpokladu absolutní nuly. (II. zákon). 

Není možno dosáhnout absolutní nuly…“ 

Entropie a matematický tvar II. termodynamického zákona 

Zmíněnou tendenci přírody samovolně nabývat pouze méně uspořádaných stavů popisuje 

věda uměle vytvořenou veličinou, která se nazývá entropie2.  

 

Při samovolných dějích entropie izolované soustavy nemůže klesat3 (dochází 

k vyrovnávání teplot4, vzrůstá pravděpodobnost a nevratnost stavu). 

 
1 Nejobecnější formulací je věta: Samovolné děje v přírodě směřují k méně uspořádaným stavům, jinou 

formulací je prosté konstatování: Není možné sestrojit perpetuum mobile druhého druhu. 
2 Z řeckého éntrépein – obracet. 
3 Autorův učitel fyziky na vysoké škole to formuloval půvabně: „I řekl Bůh, když tvořil svět: Budiž entropie 

maximální.“ 
4 Odtud pocházela i teorie tepelné smrti vesmíru, která se dívala na vesmír jako na izolovanou soustavu a 

předpokládala, že po vyrovnání teplot ustane veškerý pohyb i život.  
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Jinak je tomu u soustav otevřených, které si vyměňují s okolím nejen energii, ale i hmotu. U 

těch může entropie i klesat (hmota entropii přináší nebo odnáší). Je to případ živých 

organismů, které se tak mohou více organizovat a tím vyvíjet. 

Entropie je energetická stavová veličina, která byla zavedena právě v souvislosti 

s termodynamickými zákony Rudolfem Clausiem1. 

 

Pomocí entropie lze matematicky vyjádřit II. termodynamický zákon: 

 

Δ𝑆 ≥
Δ𝑄

𝑇
 (J ∙ K−1). 

 

 

Znaménko nerovnosti platí pro nevratné procesy, znaménko rovnosti pro vratné. Z této 

rovnice, jejíž odvození a podrobnější rozbor se vymykají poslání dané učebnice, mimo jiné 

plyne, že teplo uchované při vyšší teplotě má jakousi větší „kvalitu“. Tedy že snáze přechází 

na nižší teplotu a je ho možno využít pro konání práce. Velké množství tepla při nízké teplotě 

(např. v místnosti) je bezcenné, protože nemáme k dispozici přirozeně nízkou teplotu, k níž by 

mohlo směřovat (uspořádanější stav, větší vzrůst entropie). 

 

Jiným praktickým využitím rovnice je možnost znázornit teplo graficky v diagramu T-S, či 

spíše T-s (měrná entropie s v J.K-1.kg-1). To bude ukázáno v následující kapitole. 

 

 

 

 

 

Otázky a úkoly: 

1. Popište perpetuum mobile I. a II. druhu. 

2. Vyslovte II. zákon termodynamiky. V čem spočívá konstatování, že doplňuje první 

zákon? 

3. Co vyjadřují stavové veličiny vnitřní energie, entalpie a entropie? 

4. Za jaké podmínky by mohl mít tepelný stroj účinnost 1, aniž by porušil I. a II. 

termodynamický zákon? Je to podmínka uskutečnitelná? 

5. Jak se určí tepelná (termická) účinnost? 

 

 

 

 

 

 

 

 

 

 

 

 
1 Rudolf Julius Emanuel Clausius (1822-1888), německý fyzik. Navazoval na práci Carnotovu, Jouleovu a 

dalších. 
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6. ZÁKLADNÍ VRATNÉ ZMĚNY STAVU IDEÁLNÍHO PLYNU 

Obsah této kapitoly: 

→ Vratné a nevratné změny 

→ Postup při rozboru změn se vztahem k řešení úloh 

→ Izochorický a izobarický přívod a odvod tepla 

→ Izotermická a izobarická komprese a expanze 

→ Změna polytropická 

Vratné a nevratné změny 

Vratný (idealizovaný) děj si můžeme představit například jako střídavé stlačování (kompresi) 

a rozpínání (expanzi) stálého množství plynu ve válci s pístem, při němž by pracovní látka 

procházela v obou směrech týmiž stavy. Ve skutečnosti tomu tak není, protože při obou 

dějích, kompresi i expanzi, přechází určití množství energie stejným směrem (podle druhého 

zákona termodynamiky). Energie plynu tedy klesá a „degraduje“ k teplu. Skutečný děj je 

nevratný. 

 

Vratnému ději bychom se hypoteticky přiblížili nekonečně pomalou změnou, při níž by 

pracovní látka procházela pouze rovnovážnými stavy (v celém objemu by došlo k vyrovnání 

teplot a tlaků). S idealizovanými vratnými ději pracujeme proto, že jsou popsatelné 

jednoduchými rovnicemi, jejich řešení nám usnadní pochopení základních principů ve 

skutečnosti znejasněných mnoha dílčími vlivy, a vratné změny často postačí s dostatečnou 

přesností i při řešení skutečných dějů (korigujeme je součiniteli a odhadnutými účinnostmi). 

Postup při rozboru změn se vztahem k řešení úloh 

Každá změna stavu je popsána rovnicí a lze ji znázornit v diagramu p-V, popř. p-v (pracovní 

diagram) a v diagramu T-s (tepelný diagram). Vyjádříme práci, přivedené nebo odvedené 

teplo, případně na změnu aplikujeme první zákon termodynamiky v prvním nebo druhém 

tvaru. Toto schéma aplikujeme na zadanou úlohu, která začíná určením změny, která se 

v úloze vyskytuje: 

 

- rovnice změny stavu, 

- pracovní a tepelný diagram, 

- práce, přivedené či odvedené teplo nebo první zákon termodynamiky. 

 

Uvedené vztahy a diagramy někdy v úloze doplníme stavovou rovnicí ve tvaru 𝑝 ∙ 𝑣 = 𝑟 ∙ 𝑇 

nebo 𝑝 ∙ 𝑉 = 𝑚 ∙ 𝑟 ∙ 𝑇. 

Izochorický a izobarický přívod a odvod tepla 

Nejčastějším případem, kdy pracujeme s izochorickou a izobarickou změnou, je právě přívod 

nebo odvod tepla v tepelných motorech. 

 

Změna izochorická (V = konst.) 

Jak bylo už dříve konstatováno, izochorickou změnu si představíme jako ohřev nebo 

ochlazování plynu v uzavřené nádobě. Je popsána Charlesovým zákonem, který jsme 

odvodili ze vztahu pro rozpínavost, zde jej vyvodíme ze stavové rovnice ideálního plynu: 

 
𝑝1 ∙ 𝑣1

𝑇1
=

𝑝2 ∙ 𝑣2

𝑇2
;  𝑣1 = 𝑣2, 
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𝑝2

𝑝1
=

𝑇2

𝑇1
. 

 

Diagramy (pro přívod tepla1, např. spalování v zážehovém motoru): 

 

 

 

 

 

 

 

 

 

 

  

 

Absolutní (objemová) práce je rovna 0. 

Technická práce (dodaná, záporná):  

𝑎𝑡 = −(𝑝2 − 𝑝1) ∙ 𝑣. 
 

Přivedené teplo: 

𝑞 = 𝑎 + ∆𝑢 = 𝑢2 − 𝑢1 = 𝑐𝑣 ∙ (𝑇2 − 𝑇1). 
 

Teplo zvětší vnitřní energii plynu. 

  

Změna izobarická (p = konst.): 

Izochorická změna byla již dříve znázorněna nádobou s pístem, který se vysouvá díky 

roztažnosti plynu, a byl odvozen Gay-Lussacův zákon. Ten nyní odvodíme ze stavové rovnice 

ideálního plynu: 
𝑝1 ∙ 𝑣1

𝑇1
=

𝑝2 ∙ 𝑣2

𝑇2
;  𝑝1 = 𝑝2, 

 
𝑣2

𝑣1
=

𝑇2

𝑇1
 𝑛𝑒𝑏𝑜 

𝑉2

𝑉1
=

𝑇2

𝑇1
. 

 

Diagramy (pro přívod tepla, např ve vznětovém motoru nebo spalovací turbíně): 

 

 

 

 

 

 

 

 

 

 

 

  

 
1 Předpokládáme, že diagramy pro opačný děj si žák odvodí sám. 
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Technická práce je rovna 0. 

Absolutní práce vykonaná expandujícím plynem: 

𝑎 = 𝑝 ∙ (𝑣2 − 𝑣1) = 𝑟 ∙ (𝑇2 − 𝑇1). 
Přivedené teplo: 

𝑞 = 𝑎𝑡 + ∆𝑖 = 𝑖2 − 𝑖1 = 𝑐𝑝 ∙ (𝑇2 − 𝑇1). 

Teplo zvýší entalpii plynu. 

 

Izotermická a adiabatická komprese a expanze 

Izotermická změna probíhá za konstantní teploty. Izotermická komprese je důležitým 

dějem, protože se mu snažíme přiblížit ve skutečných kompresorech1. Představuje 

úsporu práce, kterou musíme vynaložit na stlačování plynu. Skutečné děje jsou však 

spíše adiabatické2. Adiabatická změna je taková změna, při níž není sdíleno teplo 

s okolím, a skutečné děje v tepelných strojích se této změně blíží, protože jsou vesměs 

velmi rychlé a teplo se nestačí sdělit. 

 

Změna izotermická (T = konst.): 

Řídí se Boyle-Mariotteovým zákonem. 

 
𝑝1 ∙ 𝑣1

𝑇1
=

𝑝2 ∙ 𝑣2

𝑇2
;  𝑇1 = 𝑇2, 

 
𝑝2

𝑝1
=

𝑣1

𝑣2
. 

 

V diagramu p-v je znázorněna rovnoosou hyperbolou s rovnicí 𝑝 = 𝑝1𝑣1 ∙
1

𝑣
. 

Diagramy (pro izotermickou kompresi):  

 

 

 

 

 

 

 

 

 

  

 

Protože ∆𝑢 = 𝑐𝑣 ∙ (𝑇2 − 𝑇1) = 0 i ∆𝑖 = 𝑐𝑝 ∙ (𝑇2 − 𝑇1) = 0, plyne z prvního zákona 

termodynamiky: 

𝑞 =  𝑎 =  𝑎𝑡. 
 

Integrací plochy diagramu p-v dostaneme: 

 

𝑞 = 𝑎 = 𝑎𝑡 = 𝑝1𝑣1 ∙ ln
𝑝1

𝑝2
= 𝑟𝑇 ∙ ln

𝑝1

𝑝2
. 

 

 
1 Kompresory jsou stroje pro stlačování a dopravu plynů, nejčastěji vzduchu. 
2 Adiabatický = neprostupný. 
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Změna adiabatická (q = 0): 

Adiabatická změna je popsána rovnicí: 

𝑝1 ∙ 𝑣1
𝜅 = 𝑝2 ∙ 𝑣2

𝜅 . 
 

Exponent  (kappa) se nazývá adiabatický exponent. Jeho hodnota závisí na druhu molekuly 

plynu. U dvouatomových plynů dosazujeme hodnotu 1,4. 

 

Diagramy (v p-v diagramu je pro porovnání vyznačena čárkovaně komprese izotermická1; na 

izotermickou kompresi tedy potřebujeme vynaložit méně práce, proto kompresory chladíme): 

 

 

 

 

 

 

 

 

 

 

  

 

Vratná adiabatická změna je změnou izoentropickou (za konstatní entropie). 

Definujeme i nevratnou adiabatickou změnu, u níž vzniká třením a vířením nevratné 

teplo, které zůstává v systému. 

 

Pro tepelné motory je důležitá práce při expanzi. Práce absolutní: 

 

𝑎 =
1

𝜅 − 1
∙ 𝑝1𝑣1 ∙ [1 − (

𝑝2

𝑝1
)

𝜅−1
𝜅

], 

 

místo 𝑝1𝑣1 můžeme dosadit 𝑟𝑇1. 

 

Technická práce: 

𝑎𝑡 = 𝜅 ∙ 𝑎. 
 

Technická práce při expanzi z prvního zákona termodynamiky2: 

 

0 = 𝑎𝑡 + 𝑖2 − 𝑖1, 
 

𝑎𝑡 = 𝑖1 − 𝑖2 (J ∙ kg−1). 
 

Příklad: 

Vzdušník (zásobník stlačeného vzduchu) má vnitřní průměr D = 900 mm a délku l = 3,5 m. Je 

plněn kompresorem o přetlaku pp = 0,68 MPa při teplotě 185 °C. Atmosférický tlak je 0,099 

MPa. Stanovte: a) absolutní tlak ve vzdušníku; b) absolutní tlak v případě, že se vzduch 

 
1 Rovnici izotermické změny dostaneme, když za adiabatický exponent dosadíme hodnotu 1. 
2 Např. při výpočtu parní turbíny známe počáteční a konečnou entalpii páry (z parních tabulek nebo diagramů 

páry) a můžeme tak stanovit teoretický výkon ze vztahu 𝑃 = 𝑄𝑚 ∙ 𝑎𝑡 . 
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ochladí na 25 °C; c) hmotnost vzduchu ve vzdušníku; d) jaké množství tepla se při chlazení 

odvedlo při ochlazení vzdušníku. 

 

Řešení: 

a) absolutní tlak ve vzdušníku: 

 

𝑝 = 𝑝𝑎 + ∆𝑝𝑝 = 0,099 + 0,68 = 0,779 (MPa).  

 

 

 

 

 

 

 

 

 

 

 

  

 

b) izochorická změna (ochlazování vzduchu v uzavřené nádobě): 

 
𝑝2

𝑝1
=

𝑇2

𝑇1
⇒ 𝑝2 = 𝑝1 ∙

𝑇2

𝑇1
= 0,779 ∙

298,15 K

458,15 K
= 0,507 (MPa). 

 

c) hmotnost vzduchu ve vzdušníku: 

 

𝑉 =
𝜋𝐷2

4
∙ 𝑙 =

𝜋 ∙ 0,92

4
∙ 3,5 = 2,227 (m3), 

 

𝑝1 ∙ 𝑉 = 𝑚 ∙ 𝑟 ∙ 𝑇1 ⇒ 𝑚 =
𝑝1 ∙ 𝑉

𝑟 ∙ 𝑇1
=

0,776 ∙ 106 ∙ 2,23

287 ∙ 458,15
= 13,16 (kg). 

 

d) množství tepla (= v tomto případě změně vnitřní energie): 

 

𝑄 = 𝑚 ∙ 𝑐𝑣 ∙ (𝑇2 − 𝑇1) = 13,16 ∙ 714 ∙ 160 = 15,034 ∙ 105 (J). 

 

(Měrnou tepelnou kapacitu vyhledáme v tabulkách). 

 

Příklad: 

V ohříváku vzduchu se ohřívá izobaricky QV = 25 m3.min-1 vzduchu z teploty t1 = 17 °C na 

teplotu t2 = 127 °C. Kolikrát se zvětší objem vzduchu při ohřevu, jestliže děj probíhá za 

stálého tlaku p = 0,12 MPa? Kolik tepla za hodinu je třeba vzduchu dodat? 

 

Řešení: 

a) Zvětšení objemu vzduchu (změna izobarická): 

 
𝑄𝑉2

𝑄𝑉1
=

𝑇2

𝑇1
=

400,15 K

290,15 K
= 1,38. 
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b) Hmotnostní tok (ze stavové rovnice; vzduch považujeme za ideální plyn) a množství tepla: 

 

𝑄𝑚 =
𝑄𝑉1 ∙ 𝑝

𝑟 ∙ 𝑇1
=

25 ∙ 0,12 ∙ 106

287 ∙ 290,15
= 36,03 (m3 ∙ min−1) = 2 161,8 (m3 ∙ h−1),  

 

𝑄𝜏 = 𝑄𝑚 ∙ 𝑐𝑝 ∙ ∆𝑇 = 2 161,8 ∙ 1 005 ∙ 110 = 2,39 ∙ 108 (J ∙ h−1). 

 

Příklad: 

V ideálním kompresoru se izotermicky stlačuje vzduch z tlaku p1 = 0,1 MPa na tlak p2 = 0,6 

MPa při teplotě t = 17 °C. Dodávané množství je QV = 60 m3.h-1. Stanovte: a) technickou 

práci, kterou je nutno dodat, b) množství tepla, které je nutno odvést, c) teoretický výkon 

hnacího motoru (příkon kompresoru). 

 

Řešení: 

 

 

 

 

 

 

 

 

 

  

 

a) dodávaná technická práce: 

 

𝑎𝑡 = 𝑟𝑇 ∙ ln
𝑝1

𝑝2
= 2,3 ∙ 𝑟𝑇 ∙ log

𝑝1

𝑝2
= 2,3 ∙ 287 ∙ 290,15 ∙ log

0,1

0,6
= −149 037,8 (J ∙ kg−1). 

 

b) odnímané množství tepla: 

 

𝑞 = 𝑎𝑡. 
 

c) teoretický příkon: 

 

𝑃 = 𝑄𝑚 ∙ 𝑎𝑡 =
𝑝2 ∙ 𝑄𝑉

𝑟 ∙ 𝑇
∙ 𝑎𝑡 = −

0,6 ∙ 106 ∙ 60

3600 s ∙ 287 ∙ 290,15
∙ 149 037,8 = −17 897,5 (W) = 
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= −17,9 (kW). 

 

Znaménko minus naznačuje, že se jedná o přiváděnou práci a přiváděný výkon při kompresi. 

 

Příklad: 

Na jaký tlak by se musela adiabaticky stlačit směs vzduchu a benzínových par ve válci 

zážehového motoru, aby nastalo samovznícení1? Počáteční teplota směsi je t1 = 100 °C, 

samozápal nastává při teplotě t2 = 430 °C. Nasávací tlak je p1 = 0,09 MPa,  = 1,4. 

 

Řešení: 

Nejprve odvodíme závislost mezi tlaky a teplotami u adiabatické změny. Použijeme rovnice 

adiabatické změny a stavové rovnice ideálního plynu. 

 

 

 

 

 

 

 

 

 

 

 

  

 

𝑝1 ∙ 𝑣1
𝜅 = 𝑝2 ∙ 𝑣2

𝜅;  𝑝1𝑣1 = 𝑟𝑇1;  𝑝2𝑣2 = 𝑟𝑇2. 
 

𝑝1 ∙ (
𝑟𝑇1

𝑝1
)

𝜅

= 𝑝2 ∙ (
𝑟𝑇2

𝑝2
)

𝜅

, 

 

po úpravě: 

(
𝑝2

𝑝1
)

𝜅−1
𝜅

=
𝑇2

𝑇1
. 

 

Tlak při samovznícení: 

𝑝2 = 𝑝1 ∙ (
𝑇2

𝑇1
)

𝜅
𝜅−1

= 0,09 ∙ (
703,15

373,15
)

1,4
0,4

= 0,827 (MPa) 

 

Změna polytropická – obecná změna stavu 

Polytropická změna je popsána rovnicí: 

𝑝1 ∙ 𝑣1
𝑛 = 𝑝2 ∙ 𝑣2

𝑛 ⇒
𝑇2

𝑇1
= (

𝑝2

𝑝1
)

𝑛−1
𝑛

= (
𝑣1

𝑣2
)

𝑛−1

. 

 

Exponent n se nazývá polytropický exponent a prakticky jej používáme v mezích 1 < 𝑛 < 𝜅. 

V tom případě polytropa leží mezi izotermou a adiabatou a někdy s ní nahrazujeme skutečné  

 
1 K samovznícení nesmí u zážehového motoru dojít. Tím je omezeno stlačení směsi – tzv. kompresní poměr. 
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komprese a expanze ve strojích. Protože se jedná o změnu teoretickou (a především vratnou), 

je třeba při této náhradě opatrnosti, abychom se příliš neodchýlili od skutečnosti. 

 

 

 

 

 

 

 

 

 

 

  

 

Protože se jedná o obecnou změnu, můžeme všechno ostatní změny vyjádřit jako 

zvláštní případy této změny: 

- izobarická změna: 𝑛 = 0, 

- izochorická změna 𝑛 → ∞, 

- izotermická změna: 𝑛 = 1, 

- vratná adiabatická (izoentropická) změna: 𝑛 = 𝜅. 

 

 

 

 

 

 

 

Otázky: 

1. Jaké rovnice změny stavu platí pro základní stavové změny? 

2. Jaké jsou rozdíly mezi vratnou změnou a změnou skutečnou? 

3. Jak se u jednotlivých změn vypočítá množství přivedeného nebo odvedeného tepla a jak 

se teplo znázorní graficky? 

4. Proč je pro technické výpočty důležitá technická práce? 
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7. TERMODYNAMIKA PAR 

Obsah této kapitoly: 

→ Výroba páry, výrobní teplo 

→ Rozdíl mezi plyny a parami, trojný a kritický bod 

→ Určení stavu par, parní tabulky vodní páry 

→ Diagramy vodní páry 

→ Technicky důležité změny stavu par 

Výroba páry, výrobní teplo 

Výrobu páry za konstantního tlaku z kapaliny o určité počáteční teplotě Tk znázorníme 

v diagramu T – Q. Na osu x vyneseme množství tepla přiváděného látce, na osu y pak změnu 

teploty látky. 

 

 

 

 

 

 

 

 

 

 

  

 

Stav 1: Kapalina. Při přívodu tepla stoupá teplota až k teplotě varu za daného tlaku. 

Stav 2: Sytá kapalina. Bylo dosaženo teploty varu, var probíhá v celém objemu kapaliny, 

teplota přestává stoupat. Stavové veličiny označujeme jednou čárkou. Suchost x = 0. 

Stav 3: Mokrá pára. Směs syté kapaliny a syté páry („pára nad hladinou“). Poměrné množství 

syté páry ve směsi vyjadřujeme suchostí páry x: 

 

𝑥 =
𝑚𝑠𝑦𝑡é 𝑝á𝑟𝑦

𝑚𝑙á𝑡𝑘𝑦
. 

 

Podíl syté kapaliny je 1 – x. Stavové veličiny indexujeme malým x. 

Stav 4: Sytá pára. Veškerá látka se za stálé teploty přeměnila v páru (dodalo se latentní 

skupenské teplo výparné, suchost je 1), při dalším ohřevu (tzv. přehřívání páry) teplota dále 

stoupá. Stavové veličiny označujeme dvěma čárkami. 

Stav 5: Přehřátá pára. 

 

Výrobní teplo přehřáté páry je dáno součtem tepla kapalinného (ohřev kapaliny na 

teplotu varu), skupenského (změna skupenství) a přehřívacího (přehřívání páry nad 

teplotu sytosti). 

𝑄 = 𝑄𝑘 + 𝐿 + 𝑄𝑝𝑝 (J), 𝑟𝑒𝑠𝑝. 𝑞 = 𝑞𝑘 + 𝑙 + 𝑞𝑝𝑝 (J ∙ kg−1). 

 

Kapalinné teplo a měrné kapalinné teplo: 

 

𝑄𝑘 = 𝑚 ∙ 𝑐 ∙ (𝑇´ − 𝑇𝑘) (J), 𝑞𝑘 =
𝑄𝑘

𝑚
= 𝑐 ∙ (𝑇´ − 𝑇𝑘) (J ∙ kg−1). 
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Skupenské teplo výparné a měrné skupenské teplo výparné: 

 

𝐿 = 𝑚𝑙 (J), 𝑙 =
𝐿

𝑚
 (J ∙ kg−1). 

 

Měrné skupenské teplo je fyzikální vlastností a jeho velikost vyhledáme v tabulkách. 

 

 

Přehřívací teplo a měrné přehřívací teplo počítáme snáze z rozdílu entalpií (výroba páry 

probíhá za konstantního tlaku – viz izobarická změna a I. zákon termodynamiky): 

 

𝑄𝑝𝑝 = 𝑚 ∙ (𝑖𝑝𝑝 − 𝑖´´) (J), 𝑞𝑝𝑝 = 𝑖𝑝𝑝 − 𝑖´´ (J ∙ kg−1). 

 

Použití vztahu 𝑄𝑝𝑝 = 𝑚 ∙ 𝑐𝑝𝑝 ∙ (𝑇𝑝𝑝 − 𝑇´´ ) je nemožné, pokud neznáme závislost měrné 

tepelné kapacity přehřáté páry na teplotě (měrná tepelná kapacita přehřáté páry není 

konstantní). Entalpie syté a přehřáté páry přitom snadno vyhledáme v tabulkách – viz dále. 

 

Opačným dějem k vypařování je kondenzace – opět probíhá za konstantního tlaku, 

v mokré páře roste podíl kapaliny. 

 

 

Rozdíl mezi plyny a parami, trojný a kritický bod 

Plyny a páry představují plynné skupenství hmoty. Parou nazýváme plynné skupenství blízko 

bodu zkapalnění (pod kritickou teplotou), plyny jsou vlastně vysoce přehřáté páry. Změny 

skupenství znázorňujeme v rovnovážném diagramu: 

 

 

1 – tuhá fáze, 

2 – kapalná fáze, 

3 – plynná fáze, 

3a – přehřátá pára, 

3b – plyn, 

s – sublimační křivka, 

t – křivka tání, 

v – křivka napětí, 

Tb – trojný bod, 

Kb – kritický bod. 

 

 

 

 

  

 

Každá fáze může existovat jen v jistém rozsahu tlaků a teplot. Hranice mezi fázemi jsou 

tvořeny křivkami s, t, v. Dvojice změn skupenství tvoří tání – tuhnutí, vypařování – 

kondenzace, sublimace – desublimace. V trojném bodě mohou existovat vedle sebe 

v rovnováze všechny tři fáze. V kritickém bodě mizí hranice mezi kapalným a plynným 

skupenstvím, látka mění skupenství naráz, bez prodlevy popisované v předchozím diagramu 

T – Q. 
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Teplota a tlak trojného a kritického bodu vody:  

 

Trojný bod Kritický bod 

pTb (Pa) TTb (K) pKb (Pa) TKb (K) 

6,1 ∙ 102 273,16 22 ∙ 106 647 

 

Určení stavu par, parní tabulky vodní páry 

Každý ví, že voda vře při teplotě 100 °C. Málokdo však už dodá nezbytný údaj, že tomu tak je 

pouze při normálním atmosférickém tlaku (přibližně 0,1 MPa). Při jiném tlaku je teplota varu 

jiná. K určení stavu syté kapaliny a syté páry tedy postačuje jedna veličina – teplota nebo tlak. 

Pro určení stavu přehřáté páry potřebujeme teplotu i tlak a pro určení stavu mokré páry 

musíme znát teplotu nebo tlak a současně suchost. 

 

Sytá kapalina, sytá pára: teplota nebo tlak. 

Přehřátá pára: teplota a tlak. 

Mokrá pára: teplota nebo tlak a suchost. 

 

Technicky důležitou parou je pára vodní. Je nositelem energie u parních turbín. Parní tabulky 

vodní páry obsahují hodnoty syté vody a syté páry, uspořádané podle teplot a podle tlaků, 

a hodnoty entalpie přehřáté páry.  

 

Parní tabulky jsou součástí strojnických tabulek.Entalpie se někdy označuje i, někdy 

H. Hodnoty se vztahují k 1 kg vody/páry. 

 

 

Sytá vodní pára a voda (uspořádání podle tlaků1): 

 

Tlak 

p 

(MPa) 

Teplota 

syté páry 

t´´ 

(°C) 

Měrný objem Entalpie Měrné 

výparné teplo 

l2,3 

(kJ.kg-1) 

Entropie 

vody 

v´ 

(m3.kg-1) 

syté páry 

v´´ 

(m3.kg-1) 

vody 

i´ 

(kJ.kg-1) 

syté páry 

i´´ 

(kJ.kg-1) 

vody 

s´ 

(kJ.kg-1) 

syté páry 

s´´ 

((kJ.kg-1) 

 

Sytá vodní pára a voda (uspořádání podle teplot): 

 
Teplota 

syté páry 

t´´ 

(°C) 

Tlak 

p 

(MPa) 

Měrný objem Entalpie Měrné 

výparné teplo 

l2,3 

(kJ.kg-1) 

Entropie 

vody 

v´ 

(m3.kg-1) 

syté páry 

v´´ 

(m3.kg-1) 

vody 

i´ 

(kJ.kg-1) 

syté páry 

i´´ 

(kJ.kg-1) 

vody 

s´ 

(kJ.kg-1) 

syté páry 

s´´ 

((kJ.kg-1) 

 

Entalpie přehřáté vodní páry i (kJ.kg-1): 

 
Tlak 

p 

(MPa) 

Teplota přehřáté páry t (°C) 

200 250 300 350 400 500 600 700 

0,1 2 875 2 974 3 074 3 216 3 278 3 488 3 706 4 157 

atd.         

 

Měrný objem, entalpie a entropie mokré páry: 

Velikost dané veličiny vypočítáme jako součet podílu syté páry a podílu syté kapaliny. 

Měrný objem: 

 
1 Hodnoty absolutního tlaku. 
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𝑣𝑥 = 𝑣´´𝑥 + 𝑣´(1 − 𝑥) = 𝑣´ + 𝑥(𝑣´´ − 𝑣´). 

Měrná entalpie: 

𝑖𝑥 = 𝑖´´𝑥 + 𝑖´(1 − 𝑥) = 𝑖´ + 𝑥(𝑖´´ − 𝑖´). 
 

Měrná entropie: 

𝑠𝑥 = 𝑠´´𝑥 + 𝑠´(1 − 𝑥) = 𝑠´ + 𝑥(𝑠´´ − 𝑠´). 

 

Příklad: 

Sytá pára má hmotnost m = 1,25 kg a objem V = 4,25 m3. Jaký má tlak a teplotu? 

 

Řešení: 

Ze zadaných hodnot vypočítáme měrný objem a v parních tabulkách podle této hodnoty 

vyhledáme tlak a teplotu. 

 

𝑣´´ =
𝑉

𝑚
=

4,25 m3

1,25 kg
= 3,4 (m3 ∙ kg−1). 

 

Teplota 𝑡 = 80 ℃, 
tlak 𝑝 = 0,047 MPa. 
 

Příklad: 

Jaké množství tepla Q je potřeba k výrobě V = 25 m3 syté páry o tlaku p = 0,2 MPa z vody 

o teplotě t = 42 °C? 

 

Řešení: 

Výrobní teplo se skládá z tepla kapalinného a z tepla skupenského: 

 

𝑄 = 𝑚 ∙ 𝑐 ∙ (𝑡´ − 𝑡) + 𝑚 ∙ 𝑙2,3, 
 

kde  

 

𝑚 =
𝑉

𝑣´´
=

25 m3

0,885 4 m3 ∙ kg−1
= 28,24 (kg). 

 

𝑄 = 28,24 kg ∙ 4,186 kJ ∙ K−1 ∙ kg−1 ∙ (120,23 ℃ − 42 ℃) + 28,24 kg ∙ 2 202 kJ ∙ kg−1 = 

 

= 71 432,25 (kJ). 

 

Hodnoty 𝑣´´, 𝑡´ = 𝑡´´, 𝑙2,3 byly vyhledány v tabulkách vodní páry. 

 

Příklad: 

Kolik kg mokré páry o tlaku p = 1,4 MPa a suchosti x = 0,94 se vyrobí, jestliže se pod kotlem 

spálí 1 kg uhlí o výhřevnosti q = 23 400 kJ.kg-1, je-li účinnost kotle 65 %? Kotel se napájí 

vodou o teplotě t1 = 52 °C. 

 

Řešení: 

Teplo potřebné pro výrobu (teplo využité) je dáno teplem, potřebným pro ohřev vody na 

teplotu varu při daném tlaku, a teplem, potřebným pro přeměnu takového podílu vody na 

páru, jaké odpovídá suchosti x: 
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𝑄 = 𝑚 ∙ 𝑐 ∙ (𝑡´ − 𝑡1) + 𝑚 ∙ 𝑥 ∙ 𝑙2,3 = 𝑚 ∙ [𝑐 ∙ (𝑡´ − 𝑡1) + 𝑥 ∙ 𝑙2,3]. 

 

Teplo získané spálením paliva (teplo přivedené): 

 

𝑄𝑝 = 𝑚𝑝 ∙ 𝑞 = 1 kg ∙ 𝑞. 

 

Účinnost kotle: 

 

𝜂 =
𝑄

𝑄𝑝
=

𝑚 ∙ [𝑐 ∙ (𝑡´ − 𝑡1) + 𝑥 ∙ 𝑙2,3]

1 kg ∙ 𝑞
, 

 

odtud hmotnost páry: 

 

𝑚 =
𝜂 ∙ 𝑞

[𝑐 ∙ (𝑡´ − 𝑡1) + 𝑥 ∙ 𝑙2,3]
= 

 

=
0,65 ∙ 23 400 kJ ∙ kg−1

[4,186 kJ ∙ K−1 ∙ kg−1 ∙ (195,04 ℃ − 52 ℃) + 0,94 ∙ 1 960 kJ ∙ kg−1 ]
= 6,23 (kg). 

 

Hodnoty 𝑡´ = 𝑡´´, 𝑙2,3 byly vyhledány v tabulkách. 

 

Diagramy vodní páry 

Stejně jako u plynů pracujeme i zde s tlakovým p – v diagramem (plocha odpovídá práci) 

a s tepelným T – s diagramem (plocha odpovídá přivedenému nebo odvedenému teplu). 

V oblasti návrhů parních turbín se však používá nejvíce i – s diagram, v němž je teplo 

vyjádřeno rozdílem entalpií, tedy úsečkou; podobně práce při adiabatické změně. To je velmi 

praktické a užitečné. Izotermy, izobary a křivky suchosti jsou ve schématech zastoupeny 

pouze pro příklad jednou křivkou. 
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Z kritického bodu vycházejí dolní mezní křivka (spojnice stavů syté kapaliny, x = 0) 

a horní mezní křivka (spojnice stavů syté páry, x = 1). Oblast 1 je oblast a kapaliny, 

oblast 2 je oblast mokré páry a oblast 3 je oblast přehřáté páry. Nad kritickou teplotou 

hovoříme o plynu. Oblast mokré páry je rozdělena křivkami suchosti. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Prakticky používaná oblast i – s diagramu je vymezena tečkovanými čarami. 

 

Použitelný i – s diagram je stažitelný např. ze stránek VUT Brno: 

http://ottp.fme.vutbr.cz/skripta/termomechanika/Is.gif. 

 

Technicky důležité změny stavu páry 

Ze stavových změn stavu vodní páry vybereme změnu izobarickou (výroba páry při 

konstantním tlaku), adiabatickou (práce parní turbíny) a škrcení páry (regulace turbíny). 

 

Změna izobarická – výroba páry při konstantním tlaku: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

http://ottp.fme.vutbr.cz/skripta/termomechanika/Is.gif
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V oblasti kapaliny izobaru kreslíme zjednodušeně totožnou s dolní mezní křivkou, protože 

izobary zde leží velmi blízko. 

 

Výrobní teplo páry bylo uvedeno výše. V i – s diagramu je přivedené teplo rovno 

vzdálenosti bodů 1 a 4 na ose y. To je praktické pro výpočty. V T – s diagramu je teplo 

znázorněno plochou, což je názorné při zobrazování energetických bilancí. 

 

I. zákon termodynamiky pro izobarickou změnu (technická práce at = 0): 

 

𝑞 = 𝑎𝑡 + 𝑖2 − 𝑖1 = 𝑖2 − 𝑖1. 
 

Opačným dějem je ochlazování páry, kondenzace a pochlazování kondenzátu. 

 

Změna adiabatická – expanze v parní turbíně: 

a) vratná změna – izoentropická: 
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V i – s diagramu je technická práce turbíny vyjádřena rozdílem entalpií (spádem): 

 

𝑞 = 𝑎𝑡 + 𝑖2 − 𝑖1 = 0; 𝑎𝑡 = 𝑖1 − 𝑖2. 
 

 

b) Nevratná adiabatická změna: 

Třením a vířením vzniká při adiabatické změně nevratné teplo, které zůstává v systému a není 

možno je využít pro konání práce. U vícestupňové turbíny postupuje ze stupně do stupně 

a podílí se na tzv. reheat faktoru – jakémsi „přihřátí ztrátami“, tzn. že součet izoentropických 

spádů jednotlivých stupňů je větší než izoentropický spád turbíny. Z posledního stupně však 

odchází ven.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

V T – s diagramu je nevratné teplo znázorněno plochou pod nevratnou změnou 1 – 2´ 

(nevratná adiabatická změna není změnou izoentropickou), v i – s diagramu můžeme 

poměrem spádů vyjádřit termodynamickou účinnost turbíny: 
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𝜂𝑡𝑑 =
𝐻´

𝐻𝑖𝑧
=

𝑖1 − 𝑖2´

𝑖1 − 𝑖2
. 

 

Podle termodynamické účinnosti posuzujeme, jak se skutečná turbína blíží ideálnímu stroji1. 

 

Výkon turbíny: 

𝑃 = 𝑄𝑚 ∙ 𝑎𝑡 ∙ 𝜂𝑡𝑑 . 
 

Srovnejte tuto rovnici s rovnicí pro výkon vodní turbíny v hydromechanice (𝑃 = 𝑄𝑚 ∙
𝑌 ∙ 𝜂), zde je místo měrné energie vody měrná technická práce páry. Rovnice jsou 

analogické. 

 

Škrcení páry: 

Škrcení páry je děj, při němž pára protéká z prostoru o vyšším tlaku do prostoru o nižším 

tlaku (v potrubí je překážka – ventil). Jedná se o ztrátový děj, nicméně jednoduše 

realizovatelný, proto se využívá v oblasti regulace parních turbín. Při adiabatickém škrcení 

uvažujeme entalpii po škrcení rovnou entalpii před škrcením (i1 = i2). 

 

Konečný stav páry po seškrcení na daný tlak nalezneme v i – s diagramu: 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Při škrcení se snižuje teplota páry, mokrá pára se škrcením vysušuje a sytá pára se 

stává přehřátou. 

 

Příklad: 

Mokré páře o tlaku p = 3 MPa, suchosti x = 0,3 a objemu V = 25 m3 se přivede za stálého 

tlaku Q = 280 MJ tepla. Jaký bude konečný stav? 

 

Řešení: 

V diagramu i – s vyznačíme počáteční stav a odečteme hodnotu entalpie: 

 

𝑖1 = 2 481 kJ ∙ kg−1. 
 

Teplo přivedené za stálého tlaku zvýší entalpii; musíme vypočítat množství tepla 

připadajícího na 1 kg páry: 

 
1 Nezaměňme termodynamickou účinnost s účinností termickou – tepelnou, které je účinností celého tepelného 

oběhu – tedy mírou využití přivedeného tepla. 
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𝑞 =
𝑄

𝑚
, 𝑚 =

𝑉

𝑣𝑥
. 

 

Měrný objem mokré páry odečteme z diagramu, nebo vypočítáme podle vztahu 

 

𝑣𝑥 = 𝑣´ + 𝑥(𝑣´´ − 𝑣´), 

 

𝑣𝑥 = 0,055 m3 ∙ kg−1. 
 

Hmotnost páry: 

 

𝑚 =
𝑉

𝑣𝑥
=

25 𝑚3

0,055 m3 ∙ kg−1
= 454,5 (kg). 

 

Teplo na 1 kg páry: 

 

𝑞 =
𝑄

𝑚
=

280 ∙ 103 kJ

454,5 kg
= 616 (kJ ∙ kg−1). 

  

 

Konečná entalpie: 

 

𝑖2 = 𝑖1 + 𝑞 = 2 481 kJ ∙ kg−1 + 616 kJ ∙ kg−1 = 3 097 (kJ ∙ kg−1). 

 

Konečným stavem je přehřátá pára o teplotě přibližně 348 °C. 

 

 

Příklad: 

Určete konečné parametry páry u parní turbíny na sytou páru s termodynamickou účinností 

0,93. Teoretický výkon Pt = 5 MW, hmotnostní tok Qm = 28,4 t.h-1 páry, tlak admisní 

(vstupmí) páry p = 1,2 MPa. 

 

Řešení: 

Výstupní pára je mokrá, hledáme tlak a suchost. Nejprve vypočítáme skutečný výkon 

a skutečný spád (měrnou práci). Poté vypočítáme teoretický spád, vyneseme jej do diagramu 

a z diagramu odečteme výstupní parametry. 

 

Skutečný výkon: 

 

𝑃𝑠𝑘𝑢𝑡 = 𝑃𝑡 ∙ 𝜂𝑡𝑑 = 5 MW ∙ 0,93 = 4,65 (MW). 
 

Skutečný spád: 

 

𝐻𝑠𝑘𝑢𝑡 =
𝑃𝑠𝑘𝑢𝑡

𝑄𝑚
=

4,65 ∙ 103 kW

7,889 kg ∙ s−1
= 589,4 (kJ ∙ kg−1). 

 

  

 

Výstupní entalpie: 
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 𝑖2𝑠𝑘𝑢𝑡 = 𝑖´´ − 𝐻𝑠𝑘𝑢𝑡 = 2 785  kJ ∙ kg−1 − 589,4 kJ ∙ kg−1 = 2 195,6 (kJ ∙ kg−1). 
 

Teoretický spád: 

 

𝐻𝑡 = 𝐻𝑠𝑘𝑢𝑡 ∙
1

𝜂𝑡𝑑
= 589,4 kJ ∙ kg−1 ∙

1

0,93
= 633,8 (kJ ∙ kg−1). 

 

Teoretická výstupní entalpie: 𝑖2𝑡𝑒𝑜𝑟 = 2 151,2 kJ ∙ kg−1.  
 

Výstupní parametry: 𝑝 = 0,02 MPa, 𝑥2 = 0,82. 
 

 

Příklad: 

Na jaký tlak je nutno seškrtit páru o tlaku p1 = 7 MPa a suchosti x = 0,92, aby se stala právě 

sytou? 

 

Řešení: 

Do diagramu vyneseme počáteční stav, sestrojíme vodorovnou úsečku (i1 = i2) k horní mezní 

křivce a odečteme tlak. 

 

 

 

p2 = 0,07 MPa. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Otázky: 

1. Kterými stavovými veličinami jsou určeny stavy syté, mokré a přehřáté páry? 

2. Vyjádřete suchost páry a podíl syté vody v páře. 

3. Nakreslete v i – s diagramu adiabatickou expanzi přehřáté a syté páry a rozhodněte, jaké 

mohou být konečné stavy. 

4. Nakreslete v i – s diagramu škrcení syté, mokré a přehřáté páry a rozhodněte, jaké mohou 

být konečné stavy. 
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8. TEPELNÉ OBĚHY (CYKLY) 

Obsah této kapitoly: 

→ Využití tepla ke konání práce, pojem tepelného oběhu 

→ Tepelná účinost 

→ Carnotův oběh 

→ Tepelné oběhy důležitých motorů 

→ Tepelný oběh kompresoru, kompresorové chlazení, tepelné čerpadlo 

Využití tepla ke konání práce, pojem tepelného oběhu 

V tepelných strojích se tepelná energie mění v mechanickou 

(„teplo v práci“) prostřednictvím pracovní látky, která je 

nositelkou tepelné energie. Prostředkem využití tepla ke konání 

práce je tepelný oběh (cyklus).  

 

Při tepelném oběhu pracovní látka prochází sérií změn stavu 

tak, že vrací do původního stavu, přičemž druhá část procesu 

probíhá jinou cestou, než první (kruhový děj). Cyklus se 

může periodicky opakovat buď jako uzavřený (pracovní 

látka se nevyměňuje), nebo jako otevřený (pracovní látka se 

nahrazuje novou látkou se stejným počátečním stavem). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Rozdíl svisle šrafované plochy a plochy šrafované vodorovně vyjadřuje práci získanou 

tepelným oběhem. Na obrázku je vyznačen oběh hnacího stroje – motoru, oběh stroje 

pracovního (např. kompresoru) probíhá obráceně; stroj je hnaný, tedy práce spotřebovaná na 

kompresi je větší. 

 

Tepelný oběh produkující práci (motor) se nazývá přímý cyklus, oběh pracovního 

stroje, který práci spotřebovává, nazýváme cyklus obrácený. 
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 Tepelná účinnost 

Teplo využitelné pro konání práce vyjádříme z prvního zákona termodynamiky: 

 

𝑞 = 𝑢2 − 𝑢1 + 𝑎, 
kde položíme 

𝑢1 = 𝑢2, 
 

protože se látka vrací do původního stavu. 

 

Pak je využitelné teplo rovno práci cyklu1: 

 

𝑞 = 𝑎. 
 

Využitelné teplo je dáno rozdílem tepla přivedeného a odvedeného (𝑞𝑝 − 𝑞𝑜) a tepelná 

(termická) účinnost cyklu je dána vztahem: 

 

𝜂𝑡 =
𝑎

𝑞𝑝
=

𝑞𝑝 − 𝑞𝑜

𝑞𝑝
. 

 

Tepelná účinnost je mírou využití přivedeného tepla. Obecně není u tepelných motorů 

založených na tepelném oběhu nijak vysoká. 

 

Pracovní cykly skutečných strojů nahrazujeme sledem vratných změn, čímž dostaneme 

idealizované porovnávací oběhy, jimž se snažíme přiblížit. 

 

Carnotův oběh 

Carnot dospěl k závěru, že pro využití tepla ke konání práce je potřebný rozdíl teplot a teplo 

je třeba přivádět při vyšší teplotě, než při jaké bude odváděno (viz kapitola Druhý zákon 

termodynamiky). Při úvahách, za jakých podmínek lze získat teoreticky nejvíce práce 

z přivedeného tepla, dospěl k cyklu složenému ze dvou 

vratných expanzí, adiabatické a izotermické, a dvou vratných 

kompresí, také adiabatické a izotermické.  

 

Podmínky vratnosti Carnotova cyklu nelze prakticky 

splnit, Carnotův cyklus je kritériem pro porovnání 

skutečných cyklů2. 

 

1 – 2: izotermická expanze, přívod tepla; 

2 – 3: adiabatická expanze; 

3 – 4: izotermická komprese; 

4 – 1: adiabatická komprese. 

 

 

  

 
1 U práce cyklu není třeba rozlišovat práci absolutní a technickou jako u jednotlivé změny; práce cyklu je dána 

algebraickým součtem buď absolutních, nebo technických prací. 
2 Carnotovu cyklu se snažil přiblížit Rudolf Diesel (1858-1913), který nakonec zkonstruoval vznětový motor 

s vyšší tepelnou účinností, než měly motory zážehové. 
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Tepelnou účinnost oběhu vyjádříme pomocí dříve uvedeného vztahu a T – s diagramu: 

 

 

 

 

 

 

 

 

 

 

 

 

  

𝜂𝑡 =
𝑞𝑝 − 𝑞𝑜

𝑞𝑝
=

𝑇1(𝑠2 − 𝑠1) − 𝑇2(𝑠2 − 𝑠1)

𝑇1(𝑠2 − 𝑠1)
=

𝑇1 − 𝑇2

𝑇1
. 

 

Rozdíl přivedeného a odvedeného tepla odpovídá teoretické práci cyklu: 

 

𝑞𝑝 − 𝑞𝑜 = 𝑎. 

 

Tepelná účinnost Carnotova cyklu závisí pouze na absolutních teplotách, při nichž je 

teplo přiváděno a odváděno. Je to nejvyšší dosažitelná tepelná účinnost cyklu. 

 

Příklad: 

Určete další tlaky a tepelnou účinnost Carnotova oběhu se vzduchem: t1 = 857 °C, 

p1 = 4,2 MPa, p2 = 3 MPa, t3 = 17 °C. 

 

Řešení: 

Izoterma 1 – 2:  

 

 𝑇1 = 𝑇2 = 857 °C + 273,15 = 1 130,15 (K). 
 

Adiabata 2 – 3 (odvození viz adiabatická změna):  

 

𝑇3

𝑇2
= (

𝑝3

𝑝2
)

𝜅−1
𝜅

;   𝑝3 = 𝑝2 (
𝑇3

𝑇2
)

𝜅
𝜅−1

= 3 MPa ∙ (
290,15 K

1 130,15 K
)

1,4
1,4−1

= 0,0257 (MPa). 

 

Izoterma 3 – 4: 

 

𝑇3 = 𝑇4 = 290,15 K. 
 

Adiabata 4 – 1: 

 

𝑇4

𝑇1
= (

𝑝4

𝑝1
)

𝜅−1
𝜅

;  𝑝4 = 𝑝1 (
𝑇4

𝑇1
)

𝜅
𝜅−1

= 4,2 MPa ∙ (
290,15 K

1 130,15 K
)

1,4
1,4−1

= 0,036 MPa. 

 

Tepelná účinnost cyklu: 
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𝜂𝑡 =
𝑇1 − 𝑇2

𝑇1
=

1 130,15 K − 290,15 K

1 130,15 K
= 0,743 (74,3 %). 

 

Obrácený Carnotův oběh je teoretickým oběhem chladicího zařízení nebo tepelného 

čerpadla. 

 

 

 

 

 

 

 

 

 

 

  

 

U obráceného oběhu rozdíl ploch odvedeného a přivedeného tepla odpovídá práci, 

kterou je nutno do oběhu dodat (v kompresoru). 

 

Chladicí faktor (chladicí zařízení): 

 

𝜀𝑐ℎ =
𝑞𝑝

𝑞𝑜 − 𝑞𝑝
=

𝑇1

𝑇2 − 𝑇1
. 

 

Topný faktor (tepelné čerpadlo): 

𝜀𝑇 =
𝑞𝑜

𝑞𝑜 − 𝑞𝑝
=

𝑇2

𝑇2 − 𝑇1
. 

Tepelné oběhy důležitých motorů 

Náhradou skutečných stavových změn změnami vratnými obdržíme tzv. porovnávací oběh1 

určitého stroje. Tento porovnávací oběh poskytuje podmínky pro dosažení co nejvyšší 

účinnosti. Tepelnou účinnost vyjádříme pomocí poměrů stavových veličin. Přiblížení 

skutečného cyklu porovnávacímu se vyjadřuje tzv. stupněm plnosti diagramu (druh 

účinnosti). Skutečné změny nejsou ostře oddělené, jedna v druhou přechází plynule. 

 

Pro porovnávací oběhy platí tyto předpoklady: 

a) Pracovní látka se nevyměňuje, oběh je uzavřený. 

b) Pracovní látka je ideální plyn. 

c) Stroj pracuje bez tření a tepelných ztrát. 

 

1. Pístové spalovací motory 

a) Ottův2 cyklus 

Tento porovnávací oběh platí pro zážehové motory (na plyn a lehká kapalná paliva), a to jak 

čtyřdobé, tak dvoudobé. Kompresní poměr je dán vztahem: 

 
1 Grafický záznam skutečných změn v pracovním prostoru nazýváme indikátorový diagram. 
2 Nicolaus August Otto (1832-1891), něm. obchodník, zájem o techniku jej přivedl ke zdokonalení spalovacího 

motoru (čtyřdobý zážehový motor s kompresí). Podnikal s inženýrem Eugenem Langenem (1833-1895). 
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𝜀 =
𝑉1,4

𝑉2,3
= (9 ÷ 12). 

Zdvihový objem 𝑉𝑧 = 𝑉1,4 − 𝑉2,3. 
Přívod i odvod tepla je izochorický. 

 

Činnost skutečného čtyřdobého zážehového motoru: 

 

1. Sání směsi paliva a vzduchu – píst se pohybuje z horní úvratě 

(HÚ) do dolní (DÚ). 

 

2. Komprese – pohyb pístu z DÚ do HÚ, před koncem komprese 

zážeh směsi následovaný rychlým vzestupem tlaku. 

 

3. Expanze spalin – pohyb pístu z HÚ do DÚ, pracovní zdvih. 

 

4. Výfuk – pohyb pístu z DÚ do HÚ. 

 

 

  

 

Dobou nazýváme jeden zdvih pístu. 

 

 

Vstup směsi a odchod spalin 4dobého motoru je řízen sacím a výfukovým ventilem. 

 

Dvoudobý motor sdružuje sání (do klikové skříně) a kompresi do jedné doby a expanzi, 

přepuštění směsi do pracovního prostoru a výfuk (tzv. vypláchnutí) do druhé doby. Vstup 

směsi, přepuštění a odchod spalin je řízen kanály ve stěně válce, otevíranými pístem. 

 

Porovnávací oběh: 

1 – 2: adiabatická komprese: 

 

𝑝1𝑣1
𝜅 = 𝑝2𝑣2

𝜅 . 
 

2 – 3: izochorický přívod tepla: 

 
𝑝3

𝑝2
=

𝑇3

𝑇2
;   𝑞2,3 = 𝑐𝑣(𝑇3 − 𝑇2). 

 

3 – 4: adiabatická expanze: 

 

𝑝3𝑣3
𝜅 = 𝑝2𝑣2

𝜅 . 
 

4 – 1: izochorický odvod tepla: 

 
𝑝4

𝑝1
=

𝑇4

𝑇1
;   𝑞2,3 = 𝑐𝑣(𝑇4 − 𝑇1). 
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Změna 0 – 1 naznačuje sání a výfuk. Skutečné sání probíhá při mírném podtlaku, výfuk musí 

probíhat při přetlaku. 

 

Výpočet tepelné účinnosti: 

𝜂𝑡 =
𝑞𝑝 − 𝑞𝑜

𝑞𝑝
=

𝑐𝑣(𝑇3 − 𝑇2) − 𝑐𝑣(𝑇4 − 𝑇1)

𝑐𝑣(𝑇3 − 𝑇2)
= 1 −

𝑇4 − 𝑇1

𝑇3 − 𝑇2
. 

 

Z rovnice adiabaty a ze stavové rovnice vypočítáme poměr teplot v závislosti na kompresním 

poměru: 

𝑝1𝑉1
𝜅 = 𝑝2𝑉2

𝜅;  
𝑝1𝑉1

𝑇1
=

𝑝2𝑉2

𝑇2
, 

 

𝑝1

𝑝2
=

𝑇1𝑉2

𝑇2𝑉1
= (

𝑉2

𝑉1
)

𝜅

;  
𝑉2

𝜅

𝑉2
= 𝑉2

𝜅−1, podobně 
𝑉1

𝜅

𝑉1
= 𝑉1

𝜅−1, 

 

𝑇1

𝑇2
= (

𝑉2

𝑉1
)

𝜅−1

=
1

𝜀𝜅−1
. 

 

Poměr objemů v bodech 1, 2 je stejný jako poměr objemů v bodech 4, 3, takže: 

 
𝑇1

𝑇2
=

𝑇4

𝑇3
=

1

𝜀𝜅−1
, 

 

takže 
𝑇4

𝑇1
=

𝑇3

𝑇2
, 

 

upravíme a převedeme na společného jmenovatele 

 
𝑇4

𝑇1
− 1 =

𝑇3

𝑇2
− 1, 

 
𝑇4 − 𝑇1

𝑇1
=

𝑇3 − 𝑇2

𝑇2
, 

z čehož plyne 
𝑇4 − 𝑇1

𝑇3 − 𝑇2
=

𝑇1

𝑇2
=

1

𝜀𝜅−1
 

 

a tepelná účinnost je závislá na kompresním poměru: 

 

𝜂𝑡 = 1 −
𝑇4 − 𝑇1

𝑇3 − 𝑇2
= 1 −

1

𝜀𝜅−1
. 

 

Tepelná účinnost roste se zvyšujícím se kompresním poměrem, ten je ovšem omezen 

odolností paliva vůči detonačnímu hoření (klepání motoru). 

 

Výpočet výkonu ideálního motoru: 

1. Určení měrné vnitřní práce oběhu: 
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𝑎 = 𝑞𝑝 − 𝑞𝑜 . 

 

2. Hmotnost směsi připadající na 1 oběh (ze stavové rovnice ideálního plynu): 

 

𝑚 =
𝑝1𝑉1

𝑟𝑇1
;  𝑉1 = 𝑉𝑧 + 𝑉2. 

 

3. Doba 1 oběhu (n – otáčky motoru): 

 

𝜏 =
1

𝑛
∙ 2 pro čtyřdobý motor,

1

𝑛
 pro dvoudobý1. 

 

4. Výkon ideálního motoru: 

 

𝑃 = 𝑄𝑚 ∙ 𝑎 =
𝑚

𝜏
∙ 𝑎. 

 

b) Sabathéův (smíšený) cyklus 

Tento porovnávací oběh platí pro nepřeplňované vznětové motory, od předchozího se liší tím, 

že přívod tepla je izochoricko-izobarický2. 

 

Vznětový motor se liší od zážehového tím, že do válce je nasáván čistý vzduch, při 

kompresním zdvihu je stlačen, čímž stoupne i jeho teplota, a do stlačeného vzduchu se 

vysokotlakým čerpadlem vstříkne palivo – nafta. Ta se vznítí, následuje pracovní expanzní 

zdvih a výfuk. 

 

Kompresní poměr má hodnotu 16 ÷ 21, tepelná účinnost může být až 45 %. 

 

1 – 2: adiabatická komprese: 

 

𝑝1𝑣1
𝜅 = 𝑝2𝑣2

𝜅 . 
 

2 – 3: izochorický přívod 

tepla: 

 
𝑝3

𝑝2
=

𝑇3

𝑇2
;   𝑞2,3 = 𝑐𝑣(𝑇3 − 𝑇2). 

 

3 – 4: izobarický přívod tepla: 

 
𝑣4

𝑣3
=

𝑇4

𝑇3
;  𝑐𝑝 = (𝑇4 − 𝑇3). 

  

 

4 – 5: adiabatická expanze: 

 

𝑝4𝑣4
𝜅 = 𝑝5𝑣5

𝜅 . 

 
1 Pracovní oběh 4dobého motoru proběhne ve 2 otáčkách, oběh 2dobého motoru v jedné. 
2 Původní Dieselův cyklus, nazvaný podle vynálezce vznětového motoru, má přívod tepla izobarický. 
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5 – 1: izochorický odvod tepla: 
𝑝5

𝑝1
=

𝑇5

𝑇1
;   𝑞2,3 = 𝑐𝑣(𝑇5 − 𝑇1). 

 

Tepelná účinnost Sabathéova cyklu: 

 

𝜂𝑡 =
𝑞𝑝2,3 + 𝑞𝑝3,4 − 𝑞𝑜

𝑞𝑝2,3 + 𝑞𝑝3,4
=

𝑐𝑣(𝑇3 − 𝑇2) + 𝑐𝑝(𝑇4 − 𝑇3) − 𝑐𝑣(𝑇5 − 𝑇1)

𝑐𝑣(𝑇3 − 𝑇2) + 𝑐𝑝(𝑇4 − 𝑇3)
, 

 

𝜂𝑡 = 1 −
1

𝜀𝜅−1
∙

𝜓𝜑𝜅 − 1

𝜅𝜑𝜓 − 𝜓(𝜅 − 1) − 1
1. 

 

V tomto vztahu je stupeň izochorického zvýšení tlaku a stupeň izobarického zvýšení objemu: 

 

𝜓 =
𝑝3

𝑝2
;  𝜑 =

𝑣4

𝑣3
. 

Přeplňovaný motor: 

Většina moderních vznětových motorů nenasává atmosférický vzduch, ale válce jsou nuceně 

plněny turbodmychadlem, 

poháněným turbínou na 

výfukové plyny. Tím se 

do válce dostane větší 

hmotnost vzduchu, zvýší 

se měrný výkon (výkon 

na jednotku objemu) a 

využije se energie 

odcházejících spalin. 

Zvýší se tak tepelná 

účinnost. 

  

  

 

Obrázek znázorňuje porovnání diagramů motoru se sáním atmosférického vzduchu a motoru 

přeplňovaného turbodmychadlem. 

 

2. Spalovací turbína – letecký proudový motor 

Spalovací turbína je komplexem několika zařízení: 

1. Turbokompresor – nasává a stlačuje vzduch. 

2. Spalovací komora – stlačený vzduch se mísí 

s palivem, směs kontinuálně hoří za stálého tlaku. 

3. Turbína – spaliny expandují v rozváděcí lopatkové 

mříži i v oběžném kole a konají práci (turbína pohání 

turbokompresor). 

4. Výstupní tryska – expanze pokračuje v trysce, 

urychlením proudu vzniká reaktivní síla pohánějící 

letadlo. 

  

 
1 Tepelnou účinnost Ottova cyklu bychom dostali dosazením 𝜑 = 1 do obecnějšího cyklu Sabathéova. Méně 

obecný postup odvození byl zvolen z důvodu jednoduchosti. 
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Moderní letecké motory jsou dvouproudové (turboventilátorové – obr b), mají větší tahovou 

účinnost než čistě proudové motory – obr. a (jedním proudem jsou spaliny z trysky, druhým 

proudem je proud vzduchu z velkého turboventilátorového kola, obtékající motor). Pokud má 

turbína stupně pohánějící vrtuli, jedná se o turbovrtulový motor, pokud je poháněn rotor 

vrtulníku, pak o motor turbohřídelový. 

 

 

 

 

 

 

 

 

 a)                                                                               b) 

 

Tepelný oběh spalovací turbíny: 

1 – 2: adiabatické stlačení ve  

vstupním ústrojí a v turbokom-

presoru: 

 

𝑝1𝑣1
𝜅 = 𝑝2𝑣2

𝜅 . 
 

2 – 3: izobarický přívod tepla 

(rovnotlaké spalování): 

 
𝑣3

𝑣2
=

𝑇3

𝑇2
;  𝑐𝑝 = (𝑇3 − 𝑇2). 

  

 

3 – 4: adiabatická expanze v turbíně (3 – 3´) a v trysce: 

 

𝑝3𝑣3
𝜅 = 𝑝4𝑣4

𝜅 . 
 

4 – 1: (přibližně) izobarický odvod tepla: 

 
𝑣1

𝑣4
=

𝑇1

𝑇4
;  𝑐𝑝 = (𝑇4 − 𝑇1). 

 

Tepelná účinnost: 

 

𝜂𝑡 =
𝑞𝑝 − 𝑞𝑜

𝑞𝑝
=

𝑐𝑝(𝑇3 − 𝑇2) − 𝑐𝑝(𝑇4 − 𝑇1)

𝑐𝑝(𝑇3 − 𝑇2)
. 

 

3. Kondenzační parní turbína (oběh Clausius – Rankinův) 

V parním generátoru (parního kotle nebo jaderného reaktoru) se ohřívá voda za konstantního 

tlaku až do stavu syté páry (jaderná elektrárna), nebo do stavu přehřáté páry (klasická uhelná 

elektrárna). Pára je vedena do parní turbíny, kde expanduje a koná práci (většinou v několika 

stupních, u velkých turbín v několika tělesech). Z turbíny odchází zpravidla již mokrá pára do 

kondenzátoru, kde se při hlubokém podtlaku ochladí a zkapalní. Napáječkou (napájecím 

čerpadlem) je pak znovu dopravena do parogenerátoru. 
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Tepelný oběh: 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

1 – 4: parogenerátor, 

přívod tepla, 

 

4 – 5: parní turbina 

(adiabatická expanze), 

 

5 – 1´: kondenzátor, 

odvod tepla, 

 

1´ - 1: napáječka. 
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Teplo je přiváděno v parogenerátoru (1 – 4) a odváděno v kondezátoru (5 – 1´). V tepelných 

diagramech (T – s, i – s) body 1 – 1´ téměř splývají, izobary jsou 

velmi blízko (malá stlačitelnost vody. 

 

Změna v bodě 1 (zvětšeno): ve skutečnosti je děj složitější, 

kondenzát se podchladí (změna 1´´ - 1´) a následně dojde ke 

zvýšení tlaku v napájecím čerpadle. 

 

 

 

 

  

 

Tepelná účinnost cyklu: 

 

𝜂𝑡 =
𝑞𝑝 − 𝑞𝑜

𝑞𝑝
=  

(𝑖4 − 𝑖1) − (𝑖5 − 𝑖1)

(𝑖4 − 𝑖1)
. 

 

Přivedené teplo a odvedené teplo je v diagramu T – 

s vyjádřeno graficky. 

 

Rozdíl (adiabatický spád) 

 

𝑎𝑡 = 𝑖4 − 𝑖5 

  

 

odpovídá teoretické měrné práci turbíny a její teoretický výkon je pak: 

 

𝑃𝑡 = 𝑄𝑚 ∙ 𝑎𝑡. 
Skutečný výkon je  

𝑃 = 𝑄𝑚 ∙ 𝑎𝑡 ∙ 𝜂𝑡𝑑 , 
 

kde 𝜂𝑡𝑑 je termodynamická účinnost (viz nevratná adiabatická změna). 

Oběh kompresoru, kompresorové chlazení 

Kompresory jsou stroje pro stlačování a dopravu plynů, nejčastěji 

vzduchu. Stlačeného vzduchu se používá např. k pohonu 

pneumatických mechanismů, pneumatických nástrojů, k čištění 

odlitků, dmýchání vzduchu do pecí apod.  

 

1 – 2: Komprese – stlačování nasátého plynu. 

 

2 – 3: Vytlačování za stálého tlaku (v bodě 2 se otevře výtlačný 

ventil nastavený na výtlačný tlak). 

 

3 – 4: Expanze zbytku stlačeného plynu v tzv. škodném 

(škodlivém) prostoru. 
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4 – 1: Sání (sací ventil se otevře až v bodě 4, vlivem škodli-

vého prostoru kompresor nasaje méně plynu, než odpovídá 

jeho zdvihovému objemu). 

 

Plocha p – v diagramu odpovídá práci potřebné 

k periodickému stlačování plynu. 

 

Objemová (volumetrická) účinnost: 

 

𝜂𝑉 =
𝑉1 − 𝑉4

𝑉1 − 𝑉3
=

skutečně nasátý objem

zdvihový objem
=

𝑉𝑠

𝑉𝑧
. 

 

Práci na kompresi je možno uspořit tím, že se místo 

adiabatické komprese1 snažíme o kompresi izotermickou 

(chlazením pracovního prostoru): 

 

  

 

 

1 – 2: Adiabatická komprese. 

 

1 – 2´: Izotermická komprese. 

 

 

Příslušné výpočtové vztahy jsou 

v kapitolách o stavových změnách. 

 

 

 

  

 

Kompresorový chladicí oběh: 

Podstatou strojního chlazení je přestup tepla z chlazené látky do vypařujícího se chladiva. 

Vhodným chladivem je látka, která se 

vypařuje za potřebné teploty při 

normálním tlaku. Ve výparníku V 

přechází teplo z chlazené látky do 

chladiva (výparné teplo). Kompresor 

Ko nasává páry chladiva a dopravuje 

je do kondenzátoru K. Ze při vyšším 

tlaku chladivo kondenzuje a 

odevzdává teplo okolí. Škrticím 

ventilem (u chladniček kapilárou) ŠV 

se sníží tlak na hodnotu, při které se 

chladivo za nízké teploty snadno 

vypařuje. 

  

 
1 Komprese a expanze ve skutečných strojích probíhají velmi rychle, proto je pokládáme většinou za adiabatické 

– teplo se nestačí sdělit. 
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1 – 2: Kompresor stlačuje páry chladiva. 

 

2 – 4: Kondenzace chladiva v kondenzátoru 

(odvod tepla). 

 

4 – 5: Snížení tlaku škrcením. 

 

5 – 1: Vypařování chladiva ve výparníku. 

 

Chladicí faktor: 

 

𝜀𝑐ℎ =
𝑞𝑝

𝑞𝑜 − 𝑞𝑝
> 1. 

 

 

 

 

 

  

 

Tepelné čerpadlo: 

Tepelné čerpadlo je zařízení, které slouží k získávání tepla pro vytápění, ohřev vody apod. 

Oběh je stejný jako u chladicího zařízení, zdrojem tepla pro výparník je vzduch, zemní vrt 

nebo voda (např. odpadní), teplo je pak dodáváno kondenzátorem. 

 

Obdobou účinnosti nebo chladicího faktoru je topný faktor: 

 

𝜀𝑡 =
𝑞𝑜

𝑞𝑜 − 𝑞𝑝
> 1. 

 

 

 

 

 

 

 

Otázky a úkoly: 

1. Charakterizujte tepelný oběh. 

2. Nakreslete Carnotův oběh a v diagramu T – s vyznačte maximální a minimální tlak. 

3. Jaký je rozdíl mezi cyklem přímým a obráceným? 

4. Vyjádřete tepelnou účinnost. 

5. Popište tepelné oběhy spalovacích motorů. 

6. Co je to kompresní poměr? 

7. Vysvětlete činnost a popište oběh spalovací turbíny. 

8. Nakreslete a popište oběh parní turbíny. 

9. Popište oběh kompresoru a chladicího zařízení s kompresorem. 
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9. PROUDĚNÍ PLYNŮ A PAR 

Obsah této kapitoly: 

→ Rovnice proudění 

→ Výtok z trysky 

→ Obtékání těles 

Rovnice proudění 

Platí opět rovnice kontinuity a Bernoulliho energetická rovnice, zde ovšem na rozdíl od 

kapalin musíme počítat se stlačitelností (hustota není konstantní) a se změnou vnitřní energie 

(závislá na změně teploty). 

 

Rovnice kontinuity 

Zákon zachování hmotnosti (hmotnostního toku): 

 

𝑄𝑚 =  𝑘𝑜𝑛𝑠𝑡., 
 

𝑆1𝑤1𝜌1 = 𝑆2𝑤2𝜌2, 
 

𝑆1𝑤1

𝑣1
=

𝑆2𝑤2

𝑣2
. 

 

 

Příklad: 

Sytá pára s tlakem p1 = 0,6 MPa se škrtí na tlak p2 = 0,15 MPa. Určete průměr potrubí za 

škrticím ventilem, jestliže se spotřebuje Qm = 1 200 kg páry za hodinu a rychlost v potrubí je 

w = 45 m.s-1. 

 

Řešení: 

Vyhledáme měrný objem syté páry po škrcení: v2 = 1,156 m3.kg-1.  

 

Z hmotnostního toku vypočítáme průřez potrubí: 

 

𝑆2 =
𝑄𝑚𝑣2

𝑤2
=

0,333 kg ∙ s−1 ∙ 1,156 m3 ∙ kg−1

45 m ∙ s−1
= 8,563 ∙ 10−3 (m2), 

 

Průměr potrubí: 

 

𝑑 = √
4𝑆2

𝜋
= √

4 ∙ 8,563 ∙ 10−3 m2

𝜋
= 0,1044 (m) ≐ 105 mm. 

 

Bernoulliho rovnice: 

Zákon zachování energie (včetně vnitřní, tedy „tepelné“ energie): 

 

𝑒𝑔 + 𝑒𝑝 + 𝑒𝑘 + 𝑢 + 𝑞 = 𝑘𝑜𝑛𝑠𝑡. (J). 

 

u je měrná vnitřní energie, q je přivedené nebo odvedené teplo z proudové trubice. 
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Uvažujeme adiabatické proudění mezi dvěma místy, kdy je q = 0: 

 

𝑔ℎ1 + 𝑝1𝑣1 +
𝑤1

2

2
+ 𝑢1 = 𝑔ℎ2 + 𝑝2𝑣2 +

𝑤2
2

2
+ 𝑢2. 

 

Je-li výškový rozdíl malý, lze jej u plynů a par zanedbat a rovnici pak zjednodušit a upravit: 

 

𝑝1𝑣1 +
𝑤1

2

2
+ 𝑢1 = 𝑝2𝑣2 +

𝑤2
2

2
+ 𝑢2, 

 

𝑖1 +
𝑤1

2

2
= 𝑖2 +

𝑤2
2

2
. 

 

Výtok z trysky 

Pro výtok dokonale hladkou zužující se tryskou z nádoby s tlakem p1 do prostředí s tlakem 

𝑝2 ≪ 𝑝1 použijeme rovnici adiabatického proudění: 

 

𝑖1 +
𝑤1

2

2
= 𝑖2 +

𝑤2
2

2
, 

 

u níž zanedbáme vstupní rychlost mnohem menší než 

rychlost výstupní, která pak bude: 

 

𝑤2 = √2(𝑖1 − 𝑖2) = √2𝐻. 
 

H je adiabatický spád. Plyn v trysce adiabaticky expanduje. 

 

 

  

 

Rovnice je analogická s rovnicí 𝑤 = √2𝑔𝐻, platnou pro rychlost volného pádu nebo 

výtokovou rychlost kapaliny z nádoby s volnou hladinou. V této rovnici je pod 

odmocninou dvojnásobek měrné polohové energie. V rovnici pro výtok plynu z trysky 

je to dvojnásobek změny měrné entalpie, tedy také klidové energie látky. 

 

Rozdíl entalpií představuje při adiabatické změně měrnou technickou práci, takže pro rychlost 

platí: 

 

𝑤2 = √2
𝜅

𝜅 − 1
∙ 𝑝1𝑣1 ∙ [1 − (

𝑝2

𝑝1
)

𝜅−1
𝜅

]. 

 

Hmotnostní tok: 

𝑄𝑚 =
𝑆2𝑤2

𝑣2
. 
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Při klesajícím protitlaku neporoste hmotnostní tok 

trvale, ale jen do určitého poměru výstupního 

a vstupního tlaku, kterému říkáme kritický tlakový 

poměr . Kritická rychlost pak bude rovna 

rychlosti zvuku ve vzdušině. Při dalším poklesu 

výstupního tlaku nastane za tryskou ztrátová 

expanze. Hmotnostní tok se při tomto nadkritickém 

výtoku více nemění. 

 

  

 

Kritický tlakový poměr je určen vztahem 

 

𝛽 =
𝑝𝑘

𝑝1
= (

2

𝜅 + 1
)

𝜅
𝜅−1

. 

 

Po dosazení za tlakový poměr do vztahu pro výstupní rychlost a po úpravě obdržíme kritickou 

rychlost:  

 

𝑤𝑘 = √2
𝜅

𝜅 + 1
𝑝1𝑣1 = √2

𝜅

𝜅 + 1
𝑟𝑇1. 

 

 

Kritický tlakový poměr  má pro vzduch a dvouatomové plyny hodnotu přibližně 0,528, 

pro přehřátou páru 0,547 a u páry na počátku výtoku syté 0,577. 

 

Lavalova dýza, expanzní proudění 

Aby se využil při nadkritickém výtoku celý spád, je nutno 

prodloužit zúženou (konvergentní) trysku rozšířeným 

nástavcem. V tomto rozšířeném nástavci dále stoupá rychlost, 

měrný objem plynu nebo páry roste rychleji, než se zvětšuje 

průřez, takže se zachovává rovnice kontinuity: 

 
𝑆𝑥𝑤𝑥

𝑣𝑥
= 𝑘𝑜𝑛𝑠𝑡. 

 

Takové proudění je expanzní a rozšířená tryska se nazývá 

Lavalova1 dýza. 

 

 

  

 

Příklad: 

Pára o tlaku 1,3 MPa a teplotě 320 °C vytéká Lavalovou dýzou do prostoru s atmosférickým 

tlakem 0,1 MPa. Rychlostní součinitel je 0,96. Určete kritický tlak, kritickou rychlost 

a výtokovou rychlost. 

 
1 Carl Gustaf de Laval (1845-1913), švédský inženýr, vynálezce rovnotlakové parní turbíny. Lavalova dýza se 

používá při nadkritickém výtoku nejen u turbín, ale i u raketových motorů. 
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Řešení:  

Protože se jedná o přehřátou páru, je kritický tlakový poměr  = 0,547. Kritický tlak potom je: 

 

𝑝𝑘 = 𝛽𝑝1 = 0,547 ∙ 1,3 MPa = 0,711 (MPa). 

 

Kritickou rychlost určíme ze vztahu 

 

𝑤𝑘 = √2(𝑖1 − 𝑖𝑘), 
 

kde entalpie určíme z i – s diagramu: 

 

𝑖1 = 3 080 kJ ∙ kg−1, 
 

𝑖𝑘 = 2 940 kJ ∙ kg−1. 
 

 

Kritická rychlost: 

 

𝑤𝑘 = √2(3 080 − 2 940) ∙ 103  J ∙ kg−1 = 

 

= 529,2 (m ∙ s−1). 

 

 

 

 

  

 

Výtoková rychlost: 

 

𝑤2´ = 𝜑𝑤2 = 𝜑√2(𝑖1 − 𝑖2) = 0,96 ∙ √2(3 080 − 2 560) ∙ 103  J ∙ kg−1 = 979 (m ∙ s−1). 

 

 

 

 

 

 

 

Otázky a úkoly: 

1. K čemu dochází při poklesu tlaku za konvergentní tryskou? 

2. Co je to kritický tlakový poměr? 

3. Popište expanzní proudění v Lavalově dýze. 

 

Obtékání těles 

Problematika obtékání těles proudícími vzdušinami (případně těles pohybujících se 

v plynném prostředí) patří do aeromechaniky (aerodynamiky). Aerodynamika řeší problémy 



58 

 

letectví a jiných rychlých dopravních prostředků, parních a plynových turbín, spalovacích 

motorů, větrání atd. 

Odpor a vztlak 

Příčinou odporu plynného prostředí je vazkost (vnitřní tření) a vznik vírů za tělesem 

(úplav). Velikost odporu Fx závisí na tvaru tělesa, což vyjadřuje součinitel odporu cx, na 

čelní ploše a na dynamickém tlaku: 

𝐹𝑥 = 𝑐𝑥 ∙ 𝑆 ∙
1

2
𝜌𝑤2. 

 

 

Vliv tvaru na odporovou sílu se zjišťuje počítačovou simulací. Její výsledky lze verifikovat 

experimentálně v aerodynamickém tunelu. Pokud se zkouší zmenšený model, musí být 

proudění fyzikálně podobné (pro určení podobnosti slouží bezrozměrná kritéria, např. 

Reynoldsovo číslo). 

 

Ukázky simulací v programu Project Falcon for Autodesk Inventor a for AutoCAD 

(http://labs.autodesk.com/utilities/falcon). Model automobilu byl vytvořen v programu 

Google SketchUp (zdroj: http://sketchup.google.com/3dwarehouse/) a importován autorem 

učebnice do AutoCADU v 3D: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Pro představu: součinitel odporu desky je orientačně 1,2, koule 0,5, tělesa 

proudnicového tvaru (kapky) 0,06 a sportovního automobilu 0,35. 

 

Aerodynamická vztlaková síla1 vzniká tehdy, jestliže na těleso působí na různých 

místech povrchu různé tlaky. Její velikost se určí podobně jako velikost odporu, vztah se 

liší součinitelem vztlaku cy: 

 
1 Rovnice jsou analogické vztahům pro dříve odvozenou sílu na desku 𝐹 = 𝐶 ∙ 𝑆 ∙ 𝜌 ∙ 𝑤2. Konstanta 𝐶 < 1 

vyjadřuje vliv tvaru tělesa a druhu proudění; aby bylo možno pracovat s dynamickým tlakem, používáme místo 

ní součinitele odporu, vztlaku a momentu (viz dále). 

http://labs.autodesk.com/utilities/falcon
http://sketchup.google.com/3dwarehouse/
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𝐹𝑦 = 𝑐𝑦 ∙ 𝑆 ∙
1

2
𝜌𝑤2. 

U letadel se obvykle za S dosazuje půdorysná plocha křídla. 

 

Rozdíl tlaků se vytvoří buď rotací válcového nebo kulového tělesa obtékaného vzdušinou 

(tzv. Magnusův jev1), nebo vhodným profilem křídla či lopatky. 

 

Při obtékání profilu křídla nebo rotujícího válce či koule 

dochází k vírovému pohybu – cirkulaci rychlosti; na 

jedné straně se rychlost proudnic 𝐰𝟎 sčítá s rychlostí 

vírového pohybu 𝐰𝐯, na druhé straně se rychlosti 

odečítají. Na straně součtu se proudnice zhušťují 

a s větší rychlostí klesne statický tlak (Bernoulliho 

rovnice). Na straně rozdílu se proudnice zředí a nižší 

rychlost vede k většímu tlaku. Výslednice tlakových sil 

je aerodynamická vztlaková síla. 

 

S růstem úhlu náběhu roste vztlak, je-li úhel náběhu 

příliš velký (tzv. přetažení letadla), nastává odtržení 

proudnic a ztráta vztlaku (viz obrázek simulace). 

 

Třetím důsledkem aerodynamického silového 

působení je moment (cm je součinitel momentu): 

𝑀 = 𝑐𝑚 ∙ 𝑆 ∙
1

2
𝜌𝑤2 ∙ 𝑏. 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Magnusova jevu se využívá např. při míčových hrách (zakřivení dráhy míče se dosáhne „falší“, tj. rotací). 
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Příklad: 

Sportovní automobil má součinitel odporu cx = 0,33. Čelní plocha je S = 1,8 m2. Určete, jaký 

výkon je třeba pro překonání odporu vzduchu při rychlosti 220 km.h-1. Průměrná hustota 

vzduchu je 1,2 kg.m-3. 

Řešení: 

Odpor určíme ze vztahu: 

 

𝐹𝑥 = 𝑐𝑥 ∙ 𝑆 ∙
1

2
𝜌𝑤2 = 

 

= 0,33 ∙ 1,8 m2 ∙ 0,5 ∙ 1,2 kg ∙ m−3 ∙ 61,112 m2 ∙ 𝑠−2 = 

 

= 1 331 (N). 
 

  

 

Výkon: 

 

𝑃 = 𝐹𝑥 ∙ 𝑤 = 1 331 N ∙ 61,11 m ∙ s−1 = 81 227 (W). 

 

Příklad: 

Letadlo o hmotnosti  9 t nese užitečné zatížení 3 000 kg. Při vodorovném letu ve výšce 3 km 

dosahuje rychlosti 340 km.h-1. Určete součinitel vztlaku křídla o ploše 56 m2. Hustota 

vzduchu je přibližně 0,9 kg.m-3. 

 

Řešení: 

Při vodorovném letu nastává rovnováha mezi tíhovou silou a vztlakovou silou: 

 

𝐺 = 𝐹𝑦 = (9 000 kg + 3 000 kg). 9,81 m ∙ s−2 = 117 750 (N). 

 

Ze vztahu pro vztlak určíme součinitel vztlaku: 

 

𝑐𝑦 =
𝐹𝑦

0,5𝑆𝜌𝑤2
=

117 750 N

0,5 ∙ 73 m2 ∙ 0,9 kg ∙ m−3 ∙ 94,442 m2 ∙ 𝑠−2
= 0,4. 

 

 

 

 

 

 

 

 

 

Otázky a úkoly: 

1. Na čem závisí odpor vzduchu automobilů, motocyklů a jak se může snížit? 

2. Vysvětlete podstatu aerodynamického vztlaku. 

 



61 

 

10. SDÍLENÍ TEPLA, VÝMĚNÍKY TEPLA 

Obsah této kapitoly: 

→ Význam a druhy sdílení tepla 

→ Sdílení tepla sáláním 

→ Proudění a vedení, prostup tepla stěnou 

→ Výměníky tepla 

 

Význam a druhy sdílení tepla 

Sdílení tepla, tedy jeho přenos z tělesa teplejšího na chladnější, je základem činnosti 

tepelných strojů a zařízení.  

 

Sdílení tepla rozdělujeme na sálání (radiaci), vedení (kondukci) a proudění (konvekci). 

Sálání je předávání tepla ve formě elektromagnetických vln, k vedení tepla dochází 

v nestejnoměrně ohřátém tělese a šíření tepla prouděním nastává při pohybu částic 

tekutin. Je vždy spojeno s vedením. 

 

Prostup tepla stěnou, tedy sdílení tepla mezi teplejší tekutinou a pevnou stěnou a touto 

stěnou a chladnější tekutinou, je základem většiny výměníků tepla. 

 

Sdílení tepla sáláním 

Tepelné záření je částí spektra elektromagnetického vlnění, která zahrnuje vlnové délky 0,8 – 

40 m. Dopadne-li zářivá energie na těleso, je zčásti pohlcena, zčásti se odráží a část projde1. 

 

Stefan – Boltzmannův zákon 

Těleso s povrchem o velikosti S vysálá při absolutní teplotě T tepelný výkon: 

 

𝑄𝜏 = 𝑐𝑆 (
𝑇

100
)

4

(W). 

 

Energie záření je přímo úměrná 4. mocnině absolutní teploty. Konstanta c je součinitel 

sálání (W.m-2.K-4). 

 

Těleso, které by pohltilo veškeré záření, by bylo tzv. absolutně černé. Skutečná tělesa jsou 

z tohoto hlediska „šedá“. 

 

Součinitele sálání 

Látka c (W.m-2.K-4) Látka c (W.m-2.K-4) 

Ideálně černé těleso 5,77 Litina oxidovaná 5,4 

Hliník oxidovaný 1,14-1,71 Měď leštěná 0,29 

Hliník leštěný 0,3 Měď oxidovaná 4,5 

Chromnikl 4,05 Omítka vápenná 5,25 

Lak bílý smaltovaný 5,23 Stříbro leštěné 0,15 

Ocel oxidovaná 4,62 Voda, led 5,23 

 
1 Pohltivost a odrazivost závisí na jakosti a barvě povrchu. 
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Sálají-li proti sobě dvě tělesa s rovnoběžnými, stejně velkými plochami o různých teplotách, 

předá teplejší těleso chladnějšímu tepelný tok rovný rozdílu: 

 

𝑄𝜏 = 𝑐𝑆 [(
𝑇1

100
)

4

− (
𝑇2

100
)

4

] (W). 

 

Součinitel vzájemného sálání c: 

 
1

𝑐
=

1

𝑐1
+

1

𝑐2
−

1

𝑐0
. 

 

c0 je součinitel sálavosti absolutně černého tělesa. 

 

Je-li těleso s povrchem S1 obklopeno tělesem s povrchem S2, dosadíme do rovnice pro tepelný 

tok plochu S1 a součinitel vzájemného sálání je: 

 
1

𝑐
=

1

𝑐1
+

𝑆1

𝑆2
(

1

𝑐2
−

1

𝑐0
). 

 

Pokud je těleso 1 nepatrné vzhledem k tělesu 2, pak je 𝑐 ≐ 𝑐1. 

Proudění a vedení, prostup tepla stěnou 

Prostup tepla stěnou je základem většiny výměníků tepla a skládá se z vedení tepla stěnou 

doprovázeného prouděním dvou látek různých teplot. Stěna může být rovinná nebo se může 

jednat o stěnu trubky (často i více vrstev – tepelná izolace, omítka, kotelní kámen apod.). 

 

V první fázi přestupuje tepelný tok Q z teplejší látky do stěny: 

 

𝑄𝜏 = 𝛼1𝑆(𝑡1 − 𝑡𝑠1). 
 

V druhé fázi prochází tento tepelný tok stěnou1. V případě stěny rovinné: 

 

𝑄𝜏 = 𝑆
𝜆

𝛿
(𝑡𝑠1 − 𝑡𝑠2), 

 

u stěny válcové: 

 

𝑄𝜏 =
2𝜋𝜆𝑙

ln
𝑑2

𝑑1

∙ (𝑡𝑠1 − 𝑡𝑠2). 

 

Ve třetí fázi tepelný tok přestupuje ze stěny do chladnější látky: 

 

𝑄𝜏 = 𝛼2𝑆(𝑡𝑠2 − 𝑡2). 
 

V těchto vztazích jsou 𝛼1, 𝛼2 součinitele přestupu tepla (W.m-2.K-1) a 𝜆 je součinitel tepelné 

vodivosti (W.m-1.K-1). Další hodnoty jsou patrné z obrázku. 

 
1 Fourierův zákon. 
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Z rovnice vyjádříme rozdíly teplot (uveden pouze případ rovinné stěny): 

 

(𝑡1 − 𝑡𝑠1) =
𝑄𝜏

𝛼1𝑆
, 

 

(𝑡𝑠1 − 𝑡𝑠2) =
𝑄𝜏𝛿

𝑆𝜆
, 

 

(𝑡𝑠2 − 𝑡2) =
𝑄𝜏

𝛼2𝑆
. 

 

Rovnice sečteme: 

 

𝑡1 − 𝑡2 =
𝑄𝜏

𝑆
(

1

𝛼1
+

1

𝛼2
+

𝛿

𝜆
). 

 

Výraz v závorce položíme roven 
1

𝑘
, kde k je součinitel prostupu tepla stěnou, a obdržíme: 

 

𝑄𝜏 = 𝑘𝑆(𝑡1 − 𝑡2). 
 

U složené stěny postupujeme obdobně, doplníme vztahy pro vedení v jednotlivých 

vrstvách. 

 

 

Provozní režim Svazkový trubkový výměník  k (W.m-2.K-1) 

kapalina - kapalina 150 – 1200  

kapalina – plyn, 1.105 Pa 15 – 70  

kapalina – plyn, 200.105 Pa 200 – 400  

pára – kapalina  1 500 – 4 000 
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Výměníky tepla 

Mezi výměníky tepla patří chladiče, ohřívače, výparníky, kondenzátory. Teplota tekutin se při 

průchodu výměníkem se postupně mění. Nejjednodušší výměník je výměník dvoutrubkový. 

Podle směru proudění se rozdělují na souproudý a protiproudý (souproud a protiproud): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Grafy znázorňují průběhy teplot v závislosti na teplosměnné ploše. Potřebnou teplosměnnou 

plochu vypočteme podle rovnice pro prostup tepla: 

 

𝑄𝜏 = 𝑘𝑆(𝑡1 − 𝑡2), zkráceně 𝑄𝜏 = 𝑘𝑆∆𝑡, 
 

do níž dosadíme za rozdíl teplot střední teplotní spád ∆𝑡𝑠. 

 

Poměr rozdílů teplot Střední teplotní spád 

∆𝑡´

∆𝑡´´
≤ 2 aritmetický 

∆𝑡´+∆𝑡´´

2
 

∆𝑡´

∆𝑡´´
> 2 

logaritmický 
∆𝑡´−∆𝑡´´

2,3∙log
∆𝑡´

∆𝑡´´

 

 

 

Porovnání souproudu a protiproudu 

Souproudý výměník má výrazný rozdíl teplot mezi teplejší a chladnější látkou na vstupu do 

výměníku. Tento velký rozdíl může snížit viskozitu látky, proto se tohoto uspořádání používá 

u velmi viskózních látek (úspora energie). Další výhodou je menší teplotní zatížení trubky, 

kdy se teplota stěny trubky blíží průměrné hodnotě teplot obou proudů. To může hrát roli 

u teplotně citlivých látek (potravinářství, farmacie). 

 

Protiproudý výměník má větší teplotní spád, proto vystačí s menším množstvím chladicí nebo 

topné kapaliny. Je ekonomičtější i z hlediska spotřeby materiálu. Používá se častěji než 

souproud. 
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Pokud u jedné látky dochází ke změně skupenství (vypařování nebo kondenzace), je 

její teplota konstatní a souproud a protiproud se neliší. 

 

Postup při předběžném návrhu výměníku tepla 

Dáno nebo voleno: Hmotnostní tok Qm1 chlazené nebo ohřívané látky, požadovaný rozdíl 

teplot, druh chladicí nebo topné látky a rozdíl teplot. 

Hledáme: Hmotnostní tok Qm2 chladicí nebo topné látky, rozměry trubek (plocha, délka, 

popř. počet). 

 

1. Výpočet tepelného toku: 

 

𝑄𝜏 = 𝑄𝑚1 ∙ 𝑐1 ∙ ∆𝑡1. 
 

2. Určení potřebného množství druhé 

látky (chladicí nebo topné): 

 

𝑄𝜏 = 𝑄𝑚2 ∙ 𝑐2 ∙ ∆𝑡2, 
 

𝑄𝑚2 =
𝑄𝜏

𝑐2 ∙ ∆𝑡2
. 

  

 

3. Určení středního teplotního spádu. 

4. Výpočet plochy a délky trubek (ze vztahu pro prostup tepla stěnou). 

 

Příklad: 

Určete, kolik tepla za hodinu vysálá do okolí povrch hliníkového kulového vodojemu 

o průměru D = 2 m, je-li jeho povrchová teplota t1 = 7 °C a okolní teplota t2 = -10 °C. 

 

Řešení: 

Povrch vodojemu: 

 

𝑆 = 4𝜋𝑟2 = 4𝜋 ∙ 12 m2 = 12,6 (m2). 
 

Tepelný tok: 

 

𝑄𝜏 = 𝑐𝑆 [(
𝑇1

100
)

4

− (
𝑇2

100
)

4

] = 1,5 W ∙ m−2 ∙ K−4 ∙ 12,6 m2 ∙ [(
280 K

100
)

4

− (
263 K

100
)

4

] = 

 

= 257,5 (W), 
 

tj. 927 kJ ∙ h−1 tepla. 

 

Příklad: 

Ve výměníku tepla se má ochladit Qm1 = 1 000 kg.h-1 oleje z teploty t1 = 60 °C na teplotu 

t2 = 30 °C vodou, která se má ohřát z teploty t1
´ = 10 °C na t2

´ = 20 °C. Součinitel prostupu 

tepla k = 1 390 W.m-2.K-1 byl odhadnut na základě podobných zařízení. Porovnejte potřebnou 

plochu trubek u souproudu a protiproudu a určete spotřebu chladicí vody. Střední měrná 

tepelná kapacita oleje je 1,67 kJ.kg-1.K-1. 
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Řešení: 

Výpočet tepelného toku: 

 

𝑄𝜏 = 𝑄𝑚1 ∙ 𝑐1 ∙ ∆𝑡1 = 0,277 kg ∙ s−1 ∙ 1,67 kJ ∙ kg−1 ∙ K−1 ∙ (60 − 30) ℃ = 13,92 (kJ ∙ s−1). 
 

Spotřeba chladicí vody: 

 

𝑄𝑚2 =
𝑄𝜏

𝑐2 ∙ ∆𝑡2
=

13,92 kJ ∙ s−1 

4,186 kJ ∙ kg−1 ∙ K−1 ∙ 10 ℃ 
= 0,332 (kg ∙ s−1) = 1 197 kg. h−1. 

 

Poměr rozdílů teplot u souproudu a protiproudu: 

souproud:  

 

∆𝑡´ = 60 ℃ − 10 ℃ = 50 (℃), 
∆𝑡´´ = 30 ℃ − 20 ℃ = 10 (℃), 
∆𝑡´

∆𝑡´´
=

50

10
= 5. 

 

Protiproud: 

 

∆𝑡´ = 60 ℃ − 20 ℃ = 40 (℃), 
∆𝑡´´ = 30 ℃ − 10 ℃ = 20 (℃), 
∆𝑡´

∆𝑡´´
=

40

20
= 2. 

 

Střední teplotní spád: 

Souproud: 

 

∆𝑡𝑠 =
∆𝑡´ − ∆𝑡´´

2,3 ∙ log
∆𝑡´

∆𝑡´´

=
50 ℃ − 10 ℃

2,3 ∙ log
50
10

= 24,9 (℃). 

 

Protiproud: 

 

∆𝑡𝑠 =
∆𝑡´ + ∆𝑡´´

2
=

40 ℃ + 20 ℃

2
= 30 (℃). 

 

Plocha trubek u souproudu: 

 

𝑆 =
𝑄𝜏

𝑘∆𝑡𝑠
=

13,92 ∙ 103 J ∙ s−1 

1 390 W ∙ m−2 ∙ K−1 ∙ 24,9 ℃
= 0,402 (m2).  

 

Plocha trubek u protiproudu: 

 

𝑆 =
𝑄𝜏

𝑘∆𝑡𝑠
=

13,92 ∙ 103 J ∙ s−1

1 390 W ∙ m−2 ∙ K−1 ∙ 30 ℃
= 0,339 (m2). 
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